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1 Introduction 

 

Mechanical analysis of flexible parts is a complicated task in the embodiment design stage of 

machinery and structures. Although, in many cases, the parts can be assumed to be rigid, there 

exist situations in which the flexibility comes to an effect in the form of unwanted vibrations 

and large deformation of the parts. For example, when a mechanism is designed to carry a 

heavy load or to act very fast and accurate, the rigidity is a wrong assumption and the 

flexibility of the components must be taken into account.  

In mechanical systems such as mechanisms and manipulators, there are flexible components 

which can be modelled based on the beam theory. Due to the geometry and loading 

conditions, beam-like flexible components can undergo large deformations. This phenomenon 

can significantly affect the kinematic accuracy and reliability of a mechanism or manipulator, 

especially in pick-and-place operations where the kinematic accuracy is very crucial.  
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On the Co-rotational Beam 

Element Formulation in Large 

Deformation Analysis 
This paper sheds more light on the co-rotational element 

formulation for beams with uniform cross-section. The 

co-rotational elements are commonly used in problems 

in which a structure undergoes a large deformation. In 

this study, the foregoing element obeys the Euler-

Bernoulli beam assumptions. Unlike the formulations 

presented in the literature, in this paper, a number of 

local nodal coordinates are employed which makes the 

kinematic description of the deformed beam much easier 

without the need of expressing any complicated 

relations. In this regard, via a case study, the 

methodology is implemented step-by-step, and the results 

are compared with the ones calculated analytically and 

by means of elliptic integrals. The methodology is briefly 

formulized for 3D cases as well. 
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Therefore, static and dynamic analyses of mechanical system should be conducted while the 

flexible beam-like components are modelled under the large deformation assumption.  There 

is a vast amount of literature on the large deformation of beams, and various approaches have 

been proposed. In the sequel, a couple of common methodologies are reviewed. 

     A common approach to solve a large deformation problem of a beam analytically is to 

incorporate elliptic integrals. Bisshopp and Drucker [1] used the Euler-Bernoulli beam theory, 

taking to the account the square of slope in the curvature formula, and obtained a complicated 

differential equation. Then, by resorting to the elliptic integrals the differential equations were 

solved. Detailed information of the corresponding closed-form solution can be found in [2]. 

Zhang and Chen also presented a more general elliptic integral solution for large deformation 

problems [3]. Computing the elliptic integrals offers the most accurate solution for thin beams 

undergoing large deformation; hence, it can be used as a criterion to evaluate other numerical 

methods. However, the calculation of the elliptic integrals itself is quite complicated.  

Instead of dealing with elliptic integrals, Wang and Kitipornchai used a mixed optimization 

and shooting method to solve the nonlinear differential equation of a large deformation 

problem [4]. Also Pai and Palazotto used a multiple shooting method to gain the large 

deflection of curved beams [5]. Yin et al. offered a number of computational models to deal 

with a large deformation of flexible fingers. By computing an effective flexural rigidity (EI) 

numerically, they could provide a uniform approximate model of non-uniform fingers [6]. 

     The finite element method (FEM) is a common numerical approach that is extensively 

used in the nonlinear analysis of structures. In this case, different methods have been 

developed to cope with issues such as geometric nonlinearities, material nonlinearities, large 

deformations, large strains, and etc. Bathe et al. [7] presented a comprehensive review on this 

matter and implemented a detailed derivation and comparison of general nonlinear finite 

element formulations based on continuum mechanics. Also, Bathe and Bolourchi presented an 

updated lagrangian and a total lagrangian formulation for a 3D beam element and compared 

the two methods in terms of computational efficiency and effectiveness [8]. In [9], Pai et al. 

presented a total lagrangian displacement based on finite element formulation for general 

beams. The authors also compared the experimental and the numerical results. Borri and 

Merlini proposed a formulation for the large deformation of inhomogeneous beams [10].  

     In addition to the total lagrangian and the updated lagrangian, the co-rotational (CR) finite 

element formulation is another tool to deal with geometric nonlinearities. The CR description 

is based on the polar decomposition theory in which the deformation of a body is splitted into 

two components, rigid motion and relative deformation. This method simplifies the derivation 

of the lagrangian formulations for large deflection problems, however, it suffers from a 

kinematic limitation: the displacements or rotations can be large but the deformations must 

remain small. A number of planar cases have been investigated in [11] and a comprehensive 

review on this subject is presented in [12].  

     The absolute nodal coordinates is another method which is very suitable for the simulation 

of flexible multibody systems. In this method, a set of coordinates such as absolute nodal 

displacements, absolute nodal slopes, and etc. are defined in the inertia frame which results in 

a constant mass matrix and a highly nonlinear stiffness matrix [13]. This method does not 

need any incremental procedure which is very advantageous, details can be obtained in 

[14,15]. By considering the shear effects as well, an absolute nodal coordinate formulation 

was presented for 3D beam elements in [16]. Gerstmayr et al. [17] presented a comprehensive 

review on this subject.  

This paper sheds more light on the CR formulation of a planar Euler-Bernoulli beam while it 

undergoes large deformation. Accordingly, the large deformation of the beams with uniform 

cross-section is obtained by incorporating a straight-forward and non-iterative algorithm.  
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According to the co-rotational formulations presented in the literature, the co-rotated rigid 

axis of each element is usually chosen to be the connecting line of the end nodes; also, the 

nodal coordinates are described in a fixed global reference frame. In this study however, the 

co-rotated rigid axis of the element is chosen to be always tangent to centroid curve of the 

deformed element at the first node, therefore, each element can be considered as a cantilever 

beam in its co-rotated frame. Also, instead of using global nodal coordinates, a set of local 

nodal coordinates are employed for each element, which makes the kinematic description of 

the deformed beam much more easier without the need of expressing any complicated 

relations. 

In this regard, first, the CR formulation is comprehensively explained by simple words. 

Next, the method is illustrated by implementing on a simple planar cantilever beam, and the 

necessary equations are derived. Then, the numerical results are compared with the closed 

form solution obtained by the elliptic integrals presented in [1-3]. Afterwards, a general 

formulation to solve the planar and spatial cantilever beams undergoing large deformation is 

presented. In the next step, a discussion is conducted regarding the accuracy of the proposed 

formulation. Also, the foretold formulation is also implemented on a planar beam with 

simple- simple boundary conditions at the end points and the numerical results are validated 

by the use of the commercial software MSC. ADAMS. Finally, the overall results are 

discussed. 

 

2 The CR Beam Formulation for a Planar Beam 

 

In the Euler-Bernoulli beam theory the bending moment is related to the curvature 

proportionally, namely, 

M = EI
dθ

ds
 = EI

d
2
y

dx2

(1+ (
dy
dx

)
2

)

3
2

 
(1) 

If the small deformation assumption is made, then it yields 

(
dy

dx
)

2

≈ 0 (2) 

And the Eq. (1) is linearized as below, 

M = EI
d

2
y

dx2
 (3) 

However, for a cantilever beam which undergoes a large deformation (Figure (1)) the 

assumption in Eq. (2) cannot be considered.   

Apparently, the angle of slope which is measured from the horizontal X axis increases 

nonlinearly from the base toward the end point. Hence, the assumption in Eq. (2) is no more 

valid. Now, the nodes N1 to N4 are selected on the central axis of the beam (depicted in 

Figure (1)). It is obvious that 

δθ4 > δθ3 >δθ2 > δθ1 > 0 

where δθi is the angle of slope at the node Ni. Because of the large deformation it yields that 

 
dy

dx
|
Ni

= tan(δθi)  ≠ 0   ,   i = 1,2…4 (4) 
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Figure 1 A large deflected cantilever beam 

 

 
Figure 2 Relative angles of slopes 

 

 
Now, the angle of slope at Ni relative to the angle of slope at Ni-1 is denoted by δθi

'
 and 

depicted in Figure (2). According to Figure (1) and Figure (2), it is obvious that: 

δθi
'  < δθi    i = 2,3,4 

This expresses that by dividing a beam into a number of elements, the relative deflection of 

each node with respect to the previous one is smaller than its absolute deflection. Hence, with 

a proper discretization, it can be assumed that each element undergoes small deformation, and 

as a result, the classic Euler-Bernoulli beam equation (Eq. (3)) can be applied for each 

element. In other words, a flexible beam-like component which undergoes a large 

deformation is discretized into some beam elements with the small deformation assumption. 

In the sequel, the method is illustrated in detail. 

 

3 Case Study 

 

In this section, without loss of generality, the CR beam element is explained via its 

implementation on a case study. The case study is a simple planar cantilever beam which is 

loaded by an external vertical force P as shown in Figure (3).  

In this case, it is assumed that the beam undergoes large deformation after applying the 

external load P.  Hence, the beam is first divided into number of elements, here three elements 
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is used.  Next, a moving coordinate reference frame, namely, the co-rotated frame, is attached 

to each node.  

Note that the origin of each local coordinate frame (Xi, Yi, Zi) is placed on the respective 

node (i) so as the axis Xi is tangent to the curve of the central axis of the deformed beam. 

These details are illustrated in Figure (4).   

As the case study is planar, three deformation variables δx, δy and δθ are introduced for each 

node.  δxi, δy
i
 and δθi are the displacement of the (i)th node with respect to (i-1)th node along 

the axis xi-1, along the axis y
i-1

 and the angle of rotation of the (i)th node with respect to the 

(i-1)th node messured about the axis zi-1, respectively.  

The rotation matrix from (i-1)th frame to (i)th frame is defined as: 

Ri-1
i  = [

cos  δθi sin  δθi

- sin  δθi cos  δθi
] (5) 

 

 

 

 

 
Figure 3 A simple cantilever beam before deformation 

 

 

  

 
 

 

Figure 4 The cantilever beam after deformation 
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By considering each element as a simple cantilever beam with respect to the previous element 

and using the Euler-Bernoulli beam theory, the stiffness matrix of the (i)th element in the 

(i-1)th frame is [19]: 

 

Ki = 

[
 
 
 
 
 
 
EiAi

li
0 0

0
12EiIi

li
3

-
6EiIi

li
2

0 -
6EiIi

li
2

4EiIi

li ]
 
 
 
 
 
 

 (6) 

      

The nodal force vector of the (i)th node is denoted by: 

fi = [fix fiy]T (7) 

and the (3×1) nodal load vector which contains the planar forces and the bending torque at the 

(i)th node expressed in the (i-1)th frame is defined as below: 

Wi = [fi miz]
T (8) 

and the planar deformation vector of the (i)th node in the (i-1)th frame is: 

Δi = [δxi δy
i

δθi]T (9) 

     As it was mentioned before, to solve a large deformation problem, it is assumed that each 

element is a cantilever beam, this means that the (i)th element is a simple cantilever beam 

whose base is attached to the end of the (i-1)th element.  

These details are illustrated in Figure (5). 

Now, the deformation and the load vectors of the (i)th element, expressed in the (i-1)th 

frame, is related via matrix Ki: 

Wi = Ki∆i (10) 

     According to Eq. (5), the transformation matrices between the frames are: 

R0
1  = [

cos  δθ1 sin  δθ1

- sin  δθ1 cos  δθ1
] (11) 

R1
2  = [

cos  δθ2 sin δθ2

- sin  δθ2 cos  δθ2
] 

(12) 

Therefore, the external force vector on the third node in the second frame is calculated as 

f3 = {
f3x

f3y
}  = [ R1

2 ][ R0
1 ]Pload = [

cos  δθ2 sin δθ2

- sin  δθ2 cos  δθ2
] × [

cos  δθ1 sin  δθ1

- sin  δθ1 cos  δθ1
] {

0

P
} = 

{
P sin(δθ1+δθ2)

P cos(δθ1+δθ2)
}   

in which 

Pload = [0 P]T 
 

(13) 

and the torque on this node is zero, namely, 

M3 = M3z = 0 (14) 
 

(15)     
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Figure 5 Deformation of an element with respect to previous one 

 

 

Hence, the planar wrench array on this node becomes 

W3 = {

f3x

f3y

M3z

} = [
P sin(δθ1+δθ2)

P cos(δθ1+δθ2)
0

] (16) 

The equilibrium equation for the third element in the second frame is: 

W3 = K3Δ3 (17) 

Now the first set of key equations is obtained as below, 

Δ3 = {

δx3

δy
3

δθ3

} = K3
-1
W3 (18) 

     By expanding the Eq. (18) it yields: 

δx3 = 
Ple sin(δθ1+δθ2)

AE
 (19) 

δy
3
 = 

Ple
3

cos  (δθ1+δθ2)

3EI
 (20) 

δθ3 = 
Ple

2
cos  (δθ1+δθ2)

2EI
 (21) 

     In the next step, the equilibrium equation of the second element is expressed in the first 

frame; as before, the force on the second node is 

f2 = [ R0
1 ]Pload = [

cos  δθ1 sin  δθ1

- sin  δθ1 cos  δθ1
] {

0

P
} = {

P sin(δθ1)

P cos(δθ1)
} (22) 

After the deformation, the position vector of the third node in the second frame equals 

r3 = [le+δx3 δy
3]

T (23) 

Also, the torque on the second node is obtained as following 

M2= Mz2= r3×f3+m3z= [P(le+δx3) cos(δθ1+δθ2) -Pδy
3
× sin(δθ1+δθ2)]ez2   (24) 

And the planar load vector for the second node is presented as 

W2= [f2
T

m2z]
T (25) 
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From the equilibrium of the second element, also, the following key equations are obtained, 

Δ2= {

δx2

δy
2

δθ2

} = K2
-1
W2 (26) 

After the expansion of the Eq. (26), it yields 

δx2 = 
Ple sin(δθ1)

EA
 (27) 

δy
2
 = 

Ple
2

6EI
(3(le+δx3) cos(δθ1+δθ2) -3δy

3
sin(δθ1+δθ2) +2le cos(δθ1)) (28) 

δθ2 = 
Ple

2EI
(2(le+δx3) cos(δθ1+δθ2) -2δy

3
sin(δθ1+δθ2) +le cos(δθ1)) (29) 

For the first element, the external force vector, the position vector of the second node and the 

moment about the 𝑍1-axis in the global reference frame are presented below, 

f1= [0 P]T 
(30

) 

r2 = [le+δx2 δy
2 ]T 

(31

) 

M1= M1z= {r2}×{f2}+M2= P(le+δx3) cos(δθ1+δθ2) +P(le+δx2) cos(δθ1) -Pδy
2

sin(δθ1) 

-Pδy
3

sin(δθ1+δθ2) 

(32

) 

and from the equilibrium equation of the first element, the last set of key equations is obtained 

as following 

Δ1= {

δx1

δy
1

δθ1

} = K1
-1
W1 (33) 

which results in 

δx1= 0 (34) 

δy
1
= 

Ple
2

6EI
(le+2(le+δx3) cos(δθ1+δθ2) -2δy

3
sin(δθ1+δθ2)) 

+
Ple

2

6EI
(3(le+δx2) cos(δθ1) -3δy

2
sin(δθ1)) 

(35) 

δθ1= 
Ple

2EI
(le+2(le+δx3) cos(δθ1+δθ2) -2δy

3
sin(δθ1+δθ2)) 

+
Ple

2EI
(2(le+δx2) cos(δθ1) -2δy

2
sin(δθ1)) 

(36) 

     Eq. (19)- (21), Eq. (27)-(29) and Eq. (34)-(36) form a system of 9 nonlinear equations with 

9 deformation variables. This set of nonlinear equations can be solved by resorting to 

numerical methods. In this study, the system of nonlinear equations is solved using Matlab 

fsolve function in collaboration with Trust- Region- Dogleg algorithm. The details on this 

algorithm can be found in [19]. 

     At the end, the position vector of the end point can be obtained as 

rend = [X Y]T = r1+ [ R0
1 T

] {r2}+ [ R0
1 T

] [ R1
2 T

] {r3} (37) 

r1 = [le+δx1 δy
1 ]T (38) 
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From hereafter, the proposed formulation is going to be referred as CBEM (Cantilever Beam 

Element Method). 

 

4 Results 

 

In this section, the results obtained from the CBEM is compared with the closed form solution 

of elliptic integrals, presented in [1-3], for different load magnitudes. Let us denote the 

deflection of the end point calculated by elliptic integrals as, 

Δend
*  = [ΔX

*
ΔY*] (39) 

and the deflection computed by CBEM elements as, 

Δend = [ΔX ΔY]T = rend-[L 0]T (40) 

The absolute error is calculated via the following formulation, 

e = ‖Δend
*

-Δend‖ (41) 

And the relative error as, 

e*= 
‖Δend

*
-Δend‖

‖Δend
* ‖

 (42) 

     Now, consider a simple cantilever beam as shown in Figure (3) with the length of L=250 

mm, height of h=2 mm, depth of b=5 mm and Young modulus of E=170 GPa. The beam is 

divided into three uniform elements and a non-follower vertical force is applied on the end 

point. The vertical force varies from 0.5 N to 7 N.  

In Figure (6), the location of the end point after deformation is shown for each load due to the 

results of CBEM, Elliptic integrals and also the classic Euler-Bernouli small deformation 

formulation. The absolute and relative errors are shown in Figure (7) and (8) for each load 

magnitude.  

 

 
 

Figure 6 Location of the end point after deformation 
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Figure 7 Plot of Absolute Error 

 
Figure 8 Plot of Relative Error 

 

5 A General Algorithm for Large Deformation Analysis of a Planar Cantilever Beam 

 

Here, a general algorithm for the static analysis of a planar cantilever beam undergoing a 

large deformation is presented. First of all, the following assumptions are taken into 

consideration: 

1. The beam is divided into (n) elements, and the cross section area of each element 

is uniform along the element. 

2. Each element is considered as an Euler – Bernoulli cantilever beam with respect to 

prior element. 

3. The external load is applied at the end point of the beam. 

4. The material is linear elastic. 

The procedure contains the following steps: 

Step 1: 

Obtain the transformation matrix between each adjacent frame. The transform matrix from the 

(i)th frame to the (i-1)th frame is 

Ri-1
i  = [

cos  δθi sin  δθi

- sin  δθi cos  δθi
] (43) 
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Step 2: 

Find the load vector on the (i)th node with respect to the (i-1)th frame. The applied external 

force is 

fext = [Px Py]T (44) 

and the external torque equals 

Mext = mextz
 ez (45) 

Then, the force vector on the (i)th node with respect to the (i-1)th frame is defined as 

following 

f1 = fext (46) 

fi = (∏ Rk-1
k

i-1

k=1

) fext   ,    i≠1 (47) 

The position vector of the (i)th node in the (i-1)th frame is defined as 

ri = [le+δxi δy
i]

T (48) 

Also, the torque applied on the (𝑖)th node is calculated as 

Mi= miz= {Mi+1}+{ri}×{fi}  ,  i≠n (49) 

Mn= Mext (50) 

Finally, the load vector on the (i)th node in the (i-1)th frame is cast in the following form, 

Wi= [fi miz]
T (51) 

Step 3: 

By considering each element as a cantilever beam, the equilibrium equation can be presented 

Wi= Ki∆i (52) 

In which  Δ𝑖  is the deformation vector of the (i)th node in the (i-1)th frame, namely, 

∆i = [δxi δy
i

δθi]T (53) 

 and Ki is the stiffness matrix, and for a planar cantilever beam element it is obtained as [18] 

Ki=

[
 
 
 
 
 
 
EA

le
0 0

0
12EI

le
3

-
6EI

le
2

0 -
6EI

le
2

4EI

le ]
 
 
 
 
 
 

 (54) 

Then, the set of key equations for the (i)th element can be derived as: 

∆i = Ki
-1
Wi (55) 

     As a result, a system of 3n nonlinear equations with 3n deformation unknowns is obtained.  

These equations are solved numerically which provides the deformation at any point of the 

beam. 

6 General Algorithm for Large Deformation Analysis of a Spatial Cantilever Beam 

 

In this section we are going to introduce a straight forward mathematical procedure to solve 

the spatial large deformation of a cantilever beam under an external load at the end. The steps 

and the assumptions in this case are very similar to the planar case. 
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First, a vector for the nodal relative displacements is defined as below, 

∆i = [δxi δy
i

δzi δθix δθiy δθiz]T 

Then, the key equations are governed similar to what was presented for a planar case.  

In the 3D space, the transform matrix from (i)th frame to the (i-1)th frame is 

Ri-1
i = [

cos  δθiz sin  δθiz 0

- sin  δθiz cos  δθiz 0

0 0 1

] × [

cos  δθiy 0 - sin  δθiy

0 1 0

sin  δθiy 0 cos  δθiy

] × [
1 0 0

0 cos  δθix sin  δθi

0 - sin  δθix cos  δθix

] (56) 

     The applied external force and torque are 

fext = [Px Py Pz]T (57) 

Mext = [Mx My Mz]T (58) 

Accordingly, the external wrench array is defined as, 

Wext = [fext
T

Mext
T ]T (59) 

The nodal forces are also can be presented as, 

F1=Fext 

Fi = (∏ Rk-1
k

i-1

k=1

)Fext   ,   i≠1 
(60) 

Moreover, the position vector of the (i)th node in the (i-1)th frame is 

ri = [le+δxi δy
i

δzi]T (61) 

The nodal torque vectors and the corresponding wrench array are defined as, 

Mn= Mext 

Mi = (∏ Rk-1
k

i-1

k=1

)Mi+1+{ri}×{Fi}   ,    i≠n 

Wi = [Fi
T

Mi
T]T 

(62) 

The stiffness matrix of a 3D cantilever beam element can be presented below 

Ki=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
EA

le
0 0 0 0 0

0
12EIz

le
3

0 0 0 -
6EIz

le
2

0 0
12EIy

le
3

0
6EIy

le
2

0

0 0 0
GeIex

le
0 0

0 0
6EIy

le
2

0
4EIy

le
0

0 -
6EIz

le
2

0 0 0
4EIz

le ]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (63) 
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Finally, the set of key equations for each element in a large deformation problem can be 

derived as, 

∆i = Ki
-1
Wi (64) 

At the end, a system of (6𝑛) nonlinear equations of (6𝑛) deformation variables is obtained. 

 

 

7 The accuracy of CBEM 

 

As it was mentioned before, the displacement of each node relative to the previous node is 

smaller than its absolute displacement which permits the use of the linear Euler-Bernoulli 

beam equation for each element. However, if the beam component is divided into more 

number of elements, the relative nodal deflections become much smaller, and as a result, the 

accuracy of CBEM gets even higher. In this section, the effect of number of elements on the 

accuracy of CBEM is investigated. 

Here, the accuracy of CBEM is tested via the beam that was introduced in section (4) and 

under the same load case. By using the results of elliptic integrals as a criterion, the location 

of the end point, after a large deformation, is shown in Figure (9) for different number of 

elements. The relative and absolute errors are shown in Figure (10) and (11). 

 As Figure (9) depicts, the curve obtained by CBEM becomes closer to the elliptic integrals 

curve as the number elements increases. According to Figure (10) and (11), by increasing the 

number of elements, the CBEM can solve the problem more accurate; however, it has a limit. 

It is seen that when the number of elements increases from 6 to 8, the CBEM results and the 

associated errors do not change significantly. 

 

 

 
 

Figure 9 Location of the end point using different numbers of elements 
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Figure 10 Absolute error of CBEM for different numbers of elements and load magnitudes 

 
Figure 11 Relative error of CBEM for different numbers of elements and load magnitudes 

 

 

8 Implementation on a planar beam with simple-simple boundary conditions 

 

Figure (12) shows a beam which has simple-simple boundary conditions at the end points. A 

fixed reference frame (X, Y, Z) is located at point 𝐴. The beam is under a vertical force F 

along the opposite direction of Y-axis, at the midpoint.  
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Also the right hand end point of the beam (B) is allowed to move along X-axis. The 

mathematical procedure is elaborated in the Appendix. 

     The beam has the length of 100 cm, uniform cross section of 0.4×2 cm2 and Young 

modulus of 71.705 GPa. By using 20 elements, CBEM is implemented for different load 

magnitudes. Also, in order to validate the numerical results, this beam is modeled in MSC. 

Adams. Figure (13), depicts the position of the midpoint after the deformation. Figure (14) 

shows the deformed beam. 

 

 

 

 

 
 

Figure 12 The planar beam with simple- simple boundary conditions 

 

 

 
 

Figure 13 The position of the midpoint after the deformation 
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Figure 14 The deformed beam 

 

 

     The displacement vector of the midpoint after the deformation obtained from CBEM and 

MSC. ADAMS results are denoted by dCBEM and dADAMS respectively. The difference 

percentage (DP) of the results are calculated as below 

DP = 
‖dCBEM-dADAMS‖

min(‖dCBEM‖,‖dADAMS‖)
×100 (65) 

 

     Figure (15) shows the difference percentage of the results for different load magnitudes. 

According to this pic, DP is less than 0.09%, therefore, CBEM results are validated. 

 
Figure 15 The difference percentage for different load magnitudes 

 



On the Co-rotational Beam Element Formulation in...  110 

9 Conclusions 

 

In this paper, the CR formulation was studied for a planar beam with uniform cross-section 

which undergoes a large deformation.  As shown in the paper, the method (CBEM) was 

explained thoroughly via simple mathematical relations that are used by engineers and 

students in the dynamics of multibody systems. This method is explained very straight 

forward and algorithmic via a planar cantilever beam as a case study which makes it easy to 

understand. In this case, the results were compared with the ones obtained by using the 

elliptic integrals. It is shown that the maximum relative error of results obtained by only three 

CR beam elements felt below 2%. Moreover the algorithm was generalized for 3D beams as 

well. At the end, a convergence study was conducted on the planar case.  By investigating the 

results, it was seen that the results does not changed significantly when the number of 

elements becomes more than six elements. In addition, CBEM is implemented on a planar 

beam with simple- simple boundary conditions and the results showed satisfying accuracy 

which proves this method is very well suited for large deformation analysis of beams with 

uniform cross section. 
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Nomenclature 

 

A Area of the cross section 

DP The difference percentage 

e The absolute error 

e* The relative error 

ez The unit vector along the Z-axis 

E Young's modulus 

fext The applied external force 
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fi Nodal force 

I The second moment of area of the cross section 

K Stiffness matrix 

l Length of the element 

L Length of the beam 

Mext The applied external torque 

Mi Nodal bending torque 

rend Position of the end point 

ri Position of the (i)th node in the (i-1)th frame 

Ri
j

 The rotation matrix from the (i)th to the (j)th frame 

Wi Nodal wrench array 

Xi, Yi, Zi Axes of the (i)th frame 

 

Greek symbols 

 

δxi
, δyi

, δzi
 The relative displacement of the (i)th node with respect to the (i-1)th 

node along the respective axis  

δθix, δθiy, δθiz  The relative rotation of the cross section at the (i)th node with respect to 

the (i-1)th node along the respective axis 

∆end Deflection of the end point calculated by CBEM 

∆end
*

 Deflection of the end point calculated by elliptic integrals 

∆i The relative nodal deformation array 

 

 

 

Appendix 

 

In this section, the mathematical procedure is elaborated in order to implement CBEM on a 

planar beam with simple- simple boundary conditions under a vertical load at the middle and 

obtain the deflections. By using 20 elements, the (10)th node (N10) is located at the middle of 

the beam and the load is applied on this node (Figure (16)). After the deformation, the angle 

of slope of the centroid curve is denoted by θ0. In order to apply CBEM, the geometrical 

constraint at point B (N20) is replaced by a constraint force, namely, Cy. Also the reference 

frame (X',Y',Z') is placed on point A, so that the X'-axis is tangent to the centroid curve of the 

deformed beam (Figure (17)). 

 

 

 

 
 

Figure 16 The beam after deformation 
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Figure 17 Some considerations 

 

     By taking the aforementioned considerations into account, the beam can be treated as a 

cantilever in the (X',Y',Z') reference frame and the formulation presented in section (5) can be 

easily implemented with some minor modifications, as the following. 

    The transformation matrix for (X,Y,Z) to (X',Y',Z') is denoted by R'
 

R'= [
cos θ0 sin  θ0

- sin θ0 cos  θ0
] (𝐴. 1) 

and the transform matrix from the (i)th frame to the (i-1)th frame is the same as Eq. (5) 

Ri-1
i = [

cos  δθi sin  δθi

- sin  δθi cos  δθi
] (𝐴. 2) 

The position vector of the (i)th node in the (i-1)th frame is 

ri=[le+δxi δy
i]

T (𝐴. 3) 

And the position vector of the (i)th node in the (X,Y,Z) reference frame is 

rNi=rNi-1+[R']
T
×(∏[ Rk-1

k ]
T

i-1

k=1

) ri=[
xNi

y
Ni]

T (𝐴. 4) 

rN1=[R']
T
×r1=[

xN1
y

N1]
T (𝐴. 5) 

The applied external force is modified as below 

fext
i

= {
[0 Cy-F]T

[0 Cy]T
          

1<i<10

11<i<20
 (𝐴. 6) 

and the external torque equals 

Mext=0 ez (𝐴. 7) 

Then, the force vector on the (i)th node with respect to the (i-1)th frame is defined as 

following 

f1=fext
1

 (𝐴. 8) 

fi=[R']×(∏ Rk-1
k

i-1

k=1

) fext
i

   ,    i≠1 (𝐴. 9) 

Also, the torque applied on the (i)th node is calculated as 

Mi=miz={Mi+1}+{ri}×{fi}  ,  i≠n (𝐴. 10) 
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Mn=Mext (𝐴. 11) 

Finally, the load vector on the (i)th node in the (i-1)th frame is cast in the following form, 

Wi=[fi miz]
T (𝐴. 12) 

And the equilibrium equation can be presented 

Wi=Ki∆i (𝐴. 13) 

In which  Δ𝑖  is the deformation vector of the (i)th node in the (i-1)th frame, namely, 

∆i=[δxi δy
i

δθi]T (𝐴. 14) 

and  Ki is the stiffness matrix. The set of key equations for the (i)th element can be derived as: 

∆i=Ki
-1
Wi (𝐴. 15) 

As a result, a system of 60 nonlinear equations with 62 unknowns is obtained.  

     Due to defining two extra unknowns (θ0 and Cy), two extra equations must be added to Eq. 

(A.15). For this purpose, the geometrical boundary conditions must be taken into account. 

Since the beam has simple- simple boundary conditions, the torque on point A is zero, 

therefore, 

xN20
Cy‐xN10

F=0 (𝐴. 16) 

Also, the displacement of the point B (N20) along Y-axis is zero which results in 

y
N20

=0 (𝐴. 17) 

Eq. (A.15), Eq. (A.16) and Eq. (A.17) together, form system of form a system of 62 equations 

with 62 unknowns which can be solved numerically. 
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 چکیده
 

هایی با سطح مقطع هدف از این مقاله، تبیین فرمولاسیونی جدید از نوع المان محدود همگرد برای تحلیل تیر

شوند، هایی که دچار تغییر شکل بزرگ مییکنواخت است. روش المان محدود همگرد، غالبا در تحلیل سازه

کنند. برنولی پیروی می -مورد نظر از فرضیات تیر اویلر هایدر این پژوهش، المان گیرد.می مورد استفاده قرار

های ارائه شده در سایر مقالات، در این پژوهش از تعدادی مختصات نودی نسبی برخلاف فرمولاسیون

کند، بدون آنکه نیازی به شود که توصیف سینماتیکی تیر تغییر شکل یافته را بسیار آسان میگیری میبهره

کی پیچیده باشد. به منظور توضیح روش مورد نظر، فرمولاسیون ارائه شده، مرحله به بیان روابط سینماتی

ی نتایج این روش با نتایج حاصل شود. پس از مقایسهای پیاده میمرحله بر روی یک تیر یکسرگیردار صفحه

وبی شود که فرمولاسیون ارائه شده از دقت خهای بیضوی(، مشاهده میاز حل تحلیلی )روش انتگرال

 گردد.های فضایی ارائه میدر ادامه نیز به طور مختصر، فرمولاسیونی برای تیر برخوردار است.
 


