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On the Co-rotational Beam
Element Formulation in Large

A K _ . Deformation Analysis
. Kermanian _ ) .
m.sc. ll This paper sheds more light on the co-rotational element
formulation for beams with uniform cross-section. The
co-rotational elements are commonly used in problems
in which a structure undergoes a large deformation. In
A. Taghvaeipour! fthis study, the foregoing element obeys the Euler-
Assistant Professor fll Bernoulli beam assumptions. Unlike the formulations
presented in the literature, in this paper, a number of
local nodal coordinates are employed which makes the
kinematic description of the deformed beam much easier
A. Kamali* without the need of expressing any complicated
Assistant Professor @ relations. In this regard, via a case study, the
methodology is implemented step-by-step, and the results
are compared with the ones calculated analytically and
by means of elliptic integrals. The methodology is briefly
formulized for 3D cases as well.

Keywords: Large deformation, Co-rotational Element Formulation, Euler-Bernoulli beam
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1 Introduction

Mechanical analysis of flexible parts is a complicated task in the embodiment design stage of
machinery and structures. Although, in many cases, the parts can be assumed to be rigid, there
exist situations in which the flexibility comes to an effect in the form of unwanted vibrations
and large deformation of the parts. For example, when a mechanism is designed to carry a
heavy load or to act very fast and accurate, the rigidity is a wrong assumption and the
flexibility of the components must be taken into account.

In mechanical systems such as mechanisms and manipulators, there are flexible components
which can be modelled based on the beam theory. Due to the geometry and loading
conditions, beam-like flexible components can undergo large deformations. This phenomenon
can significantly affect the kinematic accuracy and reliability of a mechanism or manipulator,
especially in pick-and-place operations where the kinematic accuracy is very crucial.
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Therefore, static and dynamic analyses of mechanical system should be conducted while the
flexible beam-like components are modelled under the large deformation assumption. There
is a vast amount of literature on the large deformation of beams, and various approaches have
been proposed. In the sequel, a couple of common methodologies are reviewed.

A common approach to solve a large deformation problem of a beam analytically is to

incorporate elliptic integrals. Bisshopp and Drucker [1] used the Euler-Bernoulli beam theory,
taking to the account the square of slope in the curvature formula, and obtained a complicated
differential equation. Then, by resorting to the elliptic integrals the differential equations were
solved. Detailed information of the corresponding closed-form solution can be found in [2].
Zhang and Chen also presented a more general elliptic integral solution for large deformation
problems [3]. Computing the elliptic integrals offers the most accurate solution for thin beams
undergoing large deformation; hence, it can be used as a criterion to evaluate other numerical
methods. However, the calculation of the elliptic integrals itself is quite complicated.
Instead of dealing with elliptic integrals, Wang and Kitipornchai used a mixed optimization
and shooting method to solve the nonlinear differential equation of a large deformation
problem [4]. Also Pai and Palazotto used a multiple shooting method to gain the large
deflection of curved beams [5]. Yin et al. offered a number of computational models to deal
with a large deformation of flexible fingers. By computing an effective flexural rigidity (EI)
numerically, they could provide a uniform approximate model of non-uniform fingers [6].

The finite element method (FEM) is a common numerical approach that is extensively
used in the nonlinear analysis of structures. In this case, different methods have been
developed to cope with issues such as geometric nonlinearities, material nonlinearities, large
deformations, large strains, and etc. Bathe et al. [7] presented a comprehensive review on this
matter and implemented a detailed derivation and comparison of general nonlinear finite
element formulations based on continuum mechanics. Also, Bathe and Bolourchi presented an
updated lagrangian and a total lagrangian formulation for a 3D beam element and compared
the two methods in terms of computational efficiency and effectiveness [8]. In [9], Pai et al.
presented a total lagrangian displacement based on finite element formulation for general
beams. The authors also compared the experimental and the numerical results. Borri and
Merlini proposed a formulation for the large deformation of inhomogeneous beams [10].

In addition to the total lagrangian and the updated lagrangian, the co-rotational (CR) finite
element formulation is another tool to deal with geometric nonlinearities. The CR description
is based on the polar decomposition theory in which the deformation of a body is splitted into
two components, rigid motion and relative deformation. This method simplifies the derivation
of the lagrangian formulations for large deflection problems, however, it suffers from a
kinematic limitation: the displacements or rotations can be large but the deformations must
remain small. A number of planar cases have been investigated in [11] and a comprehensive
review on this subject is presented in [12].

The absolute nodal coordinates is another method which is very suitable for the simulation
of flexible multibody systems. In this method, a set of coordinates such as absolute nodal
displacements, absolute nodal slopes, and etc. are defined in the inertia frame which results in
a constant mass matrix and a highly nonlinear stiffness matrix [13]. This method does not
need any incremental procedure which is very advantageous, details can be obtained in
[14,15]. By considering the shear effects as well, an absolute nodal coordinate formulation
was presented for 3D beam elements in [16]. Gerstmayr et al. [17] presented a comprehensive
review on this subject.

This paper sheds more light on the CR formulation of a planar Euler-Bernoulli beam while it
undergoes large deformation. Accordingly, the large deformation of the beams with uniform
cross-section is obtained by incorporating a straight-forward and non-iterative algorithm.
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According to the co-rotational formulations presented in the literature, the co-rotated rigid
axis of each element is usually chosen to be the connecting line of the end nodes; also, the
nodal coordinates are described in a fixed global reference frame. In this study however, the
co-rotated rigid axis of the element is chosen to be always tangent to centroid curve of the
deformed element at the first node, therefore, each element can be considered as a cantilever
beam in its co-rotated frame. Also, instead of using global nodal coordinates, a set of local
nodal coordinates are employed for each element, which makes the kinematic description of
the deformed beam much more easier without the need of expressing any complicated
relations.

In this regard, first, the CR formulation is comprehensively explained by simple words.
Next, the method is illustrated by implementing on a simple planar cantilever beam, and the
necessary equations are derived. Then, the numerical results are compared with the closed
form solution obtained by the elliptic integrals presented in [1-3]. Afterwards, a general
formulation to solve the planar and spatial cantilever beams undergoing large deformation is
presented. In the next step, a discussion is conducted regarding the accuracy of the proposed
formulation. Also, the foretold formulation is also implemented on a planar beam with
simple- simple boundary conditions at the end points and the numerical results are validated
by the use of the commercial software MSC. ADAMS. Finally, the overall results are
discussed.

2 The CR Beam Formulation for a Planar Beam

In the Euler-Bernoulli beam theory the bending moment is related to the curvature
proportionally, namely,

d2y
M=EI a9 =EI dx?
s 2 (1)
dy 2
(1+ (&) )
If the small deformation assumption is made, then it yields
d 2
<_y) ~0 @)
dx
And the Eq. (1) is linearized as below,
dzy
—EI—2 @)
M=El->

However, for a cantilever beam which undergoes a large deformation (Figure (1)) the
assumption in Eq. (2) cannot be considered.

Apparently, the angle of slope which is measured from the horizontal X axis increases
nonlinearly from the base toward the end point. Hence, the assumption in Eq. (2) is no more
valid. Now, the nodes N; to N, are selected on the central axis of the beam (depicted in
Figure (1)). It is obvious that

30,4 > 005 >80, > 00, >0
where 60; is the angle of slope at the node N;. Because of the large deformation it yields that

d
2= tan(s0,) 20 , i=12...4 )
dX N;
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Figure 1 A large deflected cantilever beam

| 00,

) 00,

Figure 2 Relative angles of slopes

Now, the angle of slope at N; relative to the angle of slope at N, is denoted by 80; and
depicted in Figure (2). According to Figure (1) and Figure (2), it is obvious that:
50, <80, 1=2,3,4

This expresses that by dividing a beam into a number of elements, the relative deflection of
each node with respect to the previous one is smaller than its absolute deflection. Hence, with
a proper discretization, it can be assumed that each element undergoes small deformation, and
as a result, the classic Euler-Bernoulli beam equation (Eqg. (3)) can be applied for each
element. In other words, a flexible beam-like component which undergoes a large
deformation is discretized into some beam elements with the small deformation assumption.
In the sequel, the method is illustrated in detail.

3 Case Study

In this section, without loss of generality, the CR beam element is explained via its
implementation on a case study. The case study is a simple planar cantilever beam which is
loaded by an external vertical force P as shown in Figure (3).

In this case, it is assumed that the beam undergoes large deformation after applying the
external load P. Hence, the beam is first divided into number of elements, here three elements
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is used. Next, a moving coordinate reference frame, namely, the co-rotated frame, is attached
to each node.

Note that the origin of each local coordinate frame (X;, Y;, Z;) is placed on the respective
node (i) so as the axis X; is tangent to the curve of the central axis of the deformed beam.
These details are illustrated in Figure (4).

As the case study is planar, three deformation variables 6x, dy and &6 are introduced for each
node. dx;, 8y, and 56; are the displacement of the (i)th node with respect to (i-1)th node along

the axis x;_;, along the axis y, , and the angle of rotation of the (i)th node with respect to the

(i-1)th node messured about the axis z,_, respectively.
The rotation matrix from (i-1)th frame to (i)th frame is defined as:

i, _ [cos 86; sin 6;
I [- sin 80, cos d6; ©)

YA
Ist node 2nd node 3rd node
X
ELLL T
P

Figure 3 A simple cantilever beam before deformation

Figure 4 The cantilever beam after deformation
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By considering each element as a simple cantilever beam with respect to the previous element
and using the Euler-Bernoulli beam theory, the stiffness matrix of the (i)th element in the

(i-1)th frame is [19]:

[EiA;
0 0
I;
2EL  6F],
Ki=| 0 R (6)
, GEL 4EL
I? Ij

The nodal force vector of the (i)th node is denoted by:
fi=[fix fiy]" (7)

and the (3x1) nodal load vector which contains the planar forces and the bending torque at the
(i)th node expressed in the (i-1)th frame is defined as below:

Wi=[f mg]" (8)
and the planar deformation vector of the (i)th node in the (i-1)th frame is:
Ai=[0x; 8y, 86" ©)

As it was mentioned before, to solve a large deformation problem, it is assumed that each
element is a cantilever beam, this means that the (i)th element is a simple cantilever beam

whose base is attached to the end of the (i-1)th element.
These details are illustrated in Figure (5).

Now, the deformation and the load vectors of the (i)th element, expressed in the (i-1)th
frame, is related via matrix K;:
Wi = KiAi (10)

According to Eq. (5), the transformation matrices between the frames are:

1o _ [cos 60, sin 86,

o [— sin 80, cos 86, (11)
2y [cos 00, sin 662]

1 -sin 80, cos &6, (12)

Therefore, the external force vector on the third node in the second frame is calculated as

(B a1t _ [cos 60, sind0, cos 00; sin 00;](0) _
5= {f?,y} B [1R] [()R]Pload - [- sin 80, cos 662] 8 [- sin 80, cos 80, {P}_

{P sin(861+862)}
P cos(86,+36,)

in which
in whic (15)

Pload = [O P]T (13)

and the torque on this node is zero, namely,

M3 = M3Z = 0 (14)
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. (i-1)th element (i)th element

Figure 5 Deformation of an element with respect to previous one

Hence, the planar wrench array on this node becomes

f3x P sin(860,+30,)
W3 =1 f3y r= [P cos(661+892)] (16)
M;, 0
The equilibrium equation for the third element in the second frame is:
W; =K;3A4 (17)
Now the first set of key equations is obtained as below,
8X3
A3 =10Y; r=K;'W; (18)
305
By expanding the Eq. (18) it yields:
Pl sin(66,+36,)
—_° 19
X3 3 AR (19)
_ PIgcos (60,+86,) 20)
03 = - 3EI
_ Pl cos (86,+36,) 1)
885 = 2EI

In the next step, the equilibrium equation of the second element is expressed in the first
frame; as before, the force on the second node is

s _[cos 80; sin 80,70 _{Psin(ﬁel)}
fz_[OR]Pload_[— sin 80, cos &0, {P}_ P cos(80,)

After the deformation, the position vector of the third node in the second frame equals
ry=[le+x;  dy;]" (23)
Also, the torque on the second node is obtained as following

(22)

M,=M,,= ryxf3+m;3,= [P(l:+3x3) cos(30,+50,) -Pdy, * sin(50;+60,)]e,» (24)
And the planar load vector for the second node is presented as
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From the equilibrium of the second element, also, the following key equations are obtained,

8X2
Ay=10Y, r =Ky "W, (26)
30,
After the expansion of the Eq. (26), it yields
Pl. sin(560,)
_ eSOV 27
0X; EA (27)
P2 ' 28
8, = oo (3(1:+5%3) cos(80,+80,) -38y, sin(30,+30,) +21, cos(36,)) (28)
P, .
80, = oo (2(1+8x3) cos(80,+30,) -23y, sin(80,+36,) +1, cos(86,)) (29)

For the first element, the external force vector, the position vector of the second node and the
moment about the Z-axis in the global reference frame are presented below,

f=[0 PI" 4
ry=[letox, By, IT (3§

M1: MIZ: {rz}x{f2}+M2: P(le+6X3) COS(661+862) +P(le+6X2) 005(891) -P6y2 sin(861) (32
-Pdy, sin(56,+36,) )

and from the equilibrium equation of the first element, the last set of key equations is obtained
as following

8X1
A=40y, r =K 'W, (33)
80,
which results in
SX]: 0 (34)
le
8\~ o (1:+2(1+8x3) cos(86,+36,) -28y, sin(56,+56,))
(35)
P2 .
tee (31 +8x,) cos(86,) -33y, sin(36,))
P,
80,= — (1.+2(1,+8x3) cos(80,+50,) -23y, sin(50,+36,))
2EI - 3 (36)
+ 2Ee (2 (I +0x,) cos(80;) 29y, sin(661))

Eq. (19)- (21), Eq. (27)-(29) and Eq. (34)-(36) form a system of 9 nonlinear equations with
9 deformation variables. This set of nonlinear equations can be solved by resorting to
numerical methods. In this study, the system of nonlinear equations is solved using Matlab
fsolve function in collaboration with Trust- Region- Dogleg algorithm. The details on this
algorithm can be found in [19].

At the end, the position vector of the end point can be obtained as

Fena = X YT =1+ [0R' | {3+ [IR'] [IR] s} (37)
r=[letox By, TT (38)
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From hereafter, the proposed formulation is going to be referred as CBEM (Cantilever Beam
Element Method).

4 Results

In this section, the results obtained from the CBEM is compared with the closed form solution
of elliptic integrals, presented in [1-3], for different load magnitudes. Let us denote the
deflection of the end point calculated by elliptic integrals as,

Aena = [AX" AY'] (39)
and the deflection computed by CBEM elements as,
Aena =[AX  AY]" =renq-[L 0]" (40)
The absolute error is calculated via the following formulation,
e= "A:nd'Aend” (41)
And the relative error as,
*_ | Aend;Aend” (42)
[ Acnall

Now, consider a simple cantilever beam as shown in Figure (3) with the length of L=250
mm, height of h=2 mm, depth of b=5 mm and Young modulus of E=170 GPa. The beam is
divided into three uniform elements and a non-follower vertical force is applied on the end
point. The vertical force varies from 0.5 N to 7 N.

In Figure (6), the location of the end point after deformation is shown for each load due to the
results of CBEM, Elliptic integrals and also the classic Euler-Bernouli small deformation
formulation. The absolute and relative errors are shown in Figure (7) and (8) for each load
magnitude.

— — Small Deformation
..P=T7N O CBEM 3 Elements
* Elliptic Integrals

1 1 I . . 1 I
238 240 242 244 246 248 250

Figure 6 Location of the end point after deformation



103 Iranian Journal of Mechanical Engineering Vol. 19, No. 2, Sep. 2018

10

* Small Deformation
* CBEM 3 Elements

Absolute Error (mm)
[6)]

1 2 3 s 5 6 7
P (N)
Figure 7 Plot of Absolute Error

16

* Small Deformation
14 + e CBEM 3 Elements

Relative Error (%)

i > 3 4 5 5 7
P (N)
Figure 8 Plot of Relative Error

5 A General Algorithm for Large Deformation Analysis of a Planar Cantilever Beam

Here, a general algorithm for the static analysis of a planar cantilever beam undergoing a
large deformation is presented. First of all, the following assumptions are taken into
consideration:
1. The beam is divided into (n) elements, and the cross section area of each element
is uniform along the element.
2. Each element is considered as an Euler — Bernoulli cantilever beam with respect to
prior element.
3. The external load is applied at the end point of the beam.
4. The material is linear elastic.
The procedure contains the following steps:
Step 1:
Obtain the transformation matrix between each adjacent frame. The transform matrix from the
(1)th frame to the (i-1)th frame is
cos 00; sin 00,

HR:[- sin 80, cos 80, (43)
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Step 2:
Find the load vector on the (i)th node with respect to the (i-1)th frame. The applied external
force is
foxe = [Px Py]T (44)
and the external torque equals
Mext = rnextZ ¢, (45)
Then, the force vector on the (i)th node with respect to the (i-1)th frame is defined as
following
) = fext (46)
i-1
= (| R |t i @47

k=1

The position vector of the (i)th node in the (i-1)th frame is defined as

r; = [l+dx;  dy;]" (48)
Also, the torque applied on the (i)th node is calculated as
M;=m;,= (M JHri}<{fi} , i#n (49)
M, = M, (50)
Finally, the load vector on the (i)th node in the (i-1)th frame is cast in the following form,
Wi=[f m]" (51)
Step 3:
By considering each element as a cantilever beam, the equilibrium equation can be presented
Wi= KiAi (52)
In which A; is the deformation vector of the (i)th node in the (i-1)th frame, namely,
Ay =[8x; Sy, 6] (53)
and K; is the stiffness matrix, and for a planar cantilever beam element it is obtained as [18]
EA
— 0 0
e
12EI  6EI
Ki=| 0 3. T (54)
Ie Ig
0 6El 4EI
|2 L

Then, the set of key equations for the (i)th element can be derived as:
A=K'W; (55)

As a result, a system of 3n nonlinear equations with 3n deformation unknowns is obtained.
These equations are solved numerically which provides the deformation at any point of the
beam.

6 General Algorithm for Large Deformation Analysis of a Spatial Cantilever Beam
In this section we are going to introduce a straight forward mathematical procedure to solve

the spatial large deformation of a cantilever beam under an external load at the end. The steps
and the assumptions in this case are very similar to the planar case.
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First, a vector for the nodal relative displacements is defined as below,

Ai = [SXi Byl 8Zi Seix Seiy SBiZ]T
Then, the key equations are governed similar to what was presented for a planar case.

In the 3D space, the transform matrix from (i)th frame to the (i-1)th frame is

 [cos 30, sin 80, O] [cos 80y O -sin &0y| 1 0 0
i.iR=|-sin 80;, cos 80;,, 0]X 0 1 0 x|0 cos 80;, sin 36, (56)
0 0 1 sin 60;, 0 cos d0; 0 -sin 06;, cos 00;,
The applied external force and torque are
fext = [PX Py PZ]T (57)
Mo =[Mx My M,JT (58)
Accordingly, the external wrench array is defined as,
Wext = [f;rxt M;rxt]T (59)
The nodal forces are also can be presented as,
FIZFext
i1 60)
B | [ [iR )P i1 (
k=1

Moreover, the position vector of the (i)th node in the (i-1)th frame is

r; = [let0x; dy, 6z]T (61)
The nodal torque vectors and the corresponding wrench array are defined as,
Mn: Mext
i-1
Mi={ | iR | Mirrdx @@y, i (62)
k=1

wi=[F M
The stiffness matrix of a 3D cantilever beam element can be presented below
'EA

0 0 0 0 0
le
o 12BL . 6EL,
X le
12E1 6EI
0 0 > L0 1—2y 0
K= ¢ ) (63)
Gelex
0 0 0 1 0 0
6EI 4EL
0 0 —= 0 Y
12 e
6EL, 4EI
0 -— 0 0 0
i 12 le
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Finally, the set of key equations for each element in a large deformation problem can be
derived as,

A =KW, (64)
At the end, a system of (6n) nonlinear equations of (6n) deformation variables is obtained.

7 The accuracy of CBEM

As it was mentioned before, the displacement of each node relative to the previous node is
smaller than its absolute displacement which permits the use of the linear Euler-Bernoulli
beam equation for each element. However, if the beam component is divided into more
number of elements, the relative nodal deflections become much smaller, and as a result, the
accuracy of CBEM gets even higher. In this section, the effect of number of elements on the
accuracy of CBEM is investigated.

Here, the accuracy of CBEM is tested via the beam that was introduced in section (4) and
under the same load case. By using the results of elliptic integrals as a criterion, the location
of the end point, after a large deformation, is shown in Figure (9) for different number of
elements. The relative and absolute errors are shown in Figure (10) and (11).

As Figure (9) depicts, the curve obtained by CBEM becomes closer to the elliptic integrals
curve as the number elements increases. According to Figure (10) and (11), by increasing the
number of elements, the CBEM can solve the problem more accurate; however, it has a limit.
It is seen that when the number of elements increases from 6 to 8, the CBEM results and the
associated errors do not change significantly.

007 T T T T T T T T
—— CBEM 3 Elements
— CBEM 4 Elements
0.06 CBEM .
5 Elements
—— CBEM 6 Elements
005 - —— CBEM 7 Elements i
’ CBEM 8 Elements
— Elliptic Integrals
. 0.04 -
£
>_
0.03
0.02
0.01
| 1 1 1

0 1 1 1 1 1
0.24 0.241 0.242 0.243 0.244 0.245 0.246 0.247 0.248 0.249 0.25

X (m)

Figure 9 Location of the end point using different numbers of elements
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1.2 T T T T T

e CBEM 3 Elements
CBEM 4 Elements

1" e CBEM 5 Elements 8
CBEM 6 Elements

* CBEM 7 Elements
CBEM 8 Elements

Absolute Error (mm)
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[e)] oo

1
~

0.2

P (N)
Figure 10 Absolute error of CBEM for different numbers of elements and load magnitudes

19 T T T T T
e CBEM 3 Elements
18+ CBEM 4 Elements i
’ * CBEM 5 Elements
CBEM 6 Elements
17 CBEM 7 Elements
’ CBEM 8 Elements
S
S 16
=
L
2
= 1.5
© 4
[0)
[h'd
1.4
1.3
12 1 1 | 1 1 1
1 2 3 4 5 6 7
P (N)

Figure 11 Relative error of CBEM for different numbers of elements and load magnitudes

8 Implementation on a planar beam with simple-simple boundary conditions

Figure (12) shows a beam which has simple-simple boundary conditions at the end points. A
fixed reference frame (X, Y, Z) is located at point A. The beam is under a vertical force F
along the opposite direction of Y-axis, at the midpoint.
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Also the right hand end point of the beam (B) is allowed to move along X-axis. The
mathematical procedure is elaborated in the Appendix.

The beam has the length of 100 cm, uniform cross section of 0.4x2 cm? and Young
modulus of 71.705 GPa. By using 20 elements, CBEM is implemented for different load
magnitudes. Also, in order to validate the numerical results, this beam is modeled in MSC.
Adams. Figure (13), depicts the position of the midpoint after the deformation. Figure (14)
shows the deformed beam.

Fi
B Before deformation

A

<Y

F B After deformation

Figure 12 The planar beam with simple- simple boundary conditions
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Figure 13 The position of the midpoint after the deformation
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Figure 14 The deformed beam
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The displacement vector of the midpoint after the deformation obtained from CBEM and
MSC. ADAMS results are denoted by dcggm and dapams respectively. The difference
percentage (DP) of the results are calculated as below

lldceEm-dapamsl|

min(”dCBEM ”:”dADAMS”)

x100

(65)

Figure (15) shows the difference percentage of the results for different load magnitudes.

According to this pic, DP is less than 0.09%, therefore, CBEM results are validated.
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Figure 15 The difference percentage for different load magnitudes
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9 Conclusions

In this paper, the CR formulation was studied for a planar beam with uniform cross-section
which undergoes a large deformation. As shown in the paper, the method (CBEM) was
explained thoroughly via simple mathematical relations that are used by engineers and
students in the dynamics of multibody systems. This method is explained very straight
forward and algorithmic via a planar cantilever beam as a case study which makes it easy to
understand. In this case, the results were compared with the ones obtained by using the
elliptic integrals. It is shown that the maximum relative error of results obtained by only three
CR beam elements felt below 2%. Moreover the algorithm was generalized for 3D beams as
well. At the end, a convergence study was conducted on the planar case. By investigating the
results, it was seen that the results does not changed significantly when the number of
elements becomes more than six elements. In addition, CBEM is implemented on a planar
beam with simple- simple boundary conditions and the results showed satisfying accuracy
which proves this method is very well suited for large deformation analysis of beams with
uniform cross section.
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Nomenclature

A Area of the cross section

DP The difference percentage

e The absolute error

e The relative error

e, The unit vector along the Z-axis

E Young's modulus
f, The applied external force
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ext
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Fend
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IR

W;

Xia Yi5 Zi

Greek symbols
6Xio Syiv 62i
66ixa 69iyv 86iZ

Aend
*

Aend
A;

Appendix

Nodal force

The second moment of area of the cross section
Stiffness matrix

Length of the element

Length of the beam

The applied external torque

Nodal bending torque

Position of the end point

Position of the (i)th node in the (i-1)th frame

The rotation matrix from the (i)th to the (j)th frame

Nodal wrench array
Axes of the (i)th frame

The relative displacement of the (i)th node with respect to the (i-1)th
node along the respective axis

The relative rotation of the cross section at the (i)th node with respect to
the (i-1)th node along the respective axis

Deflection of the end point calculated by CBEM

Deflection of the end point calculated by elliptic integrals

The relative nodal deformation array

In this section, the mathematical procedure is elaborated in order to implement CBEM on a
planar beam with simple- simple boundary conditions under a vertical load at the middle and
obtain the deflections. By using 20 elements, the (10)th node (N,,) is located at the middle of
the beam and the load is applied on this node (Figure (16)). After the deformation, the angle
of slope of the centroid curve is denoted by 6,. In order to apply CBEM, the geometrical
constraint at point B (N,) is replaced by a constraint force, namely, C,. Also the reference

frame (X,Y,Z) is placed on point A, so that the X'-axis is tangent to the centroid curve of the
deformed beam (Figure (17)).

Y

NlO

Figure 16 The beam after deformation
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y
NIO

Figure 17 Some considerations

By taking the aforementioned considerations into account, the beam can be treated as a

cantilever in the (X,Y,Z) reference frame and the formulation presented in section (5) can be
easily implemented with some minor modifications, as the following.

The transformation matrix for (X,Y,Z) to (X,Y,Z) is denoted by R

,_[cosBy sin 0
B [- sin@, cos 60] (4.1
and the transform matrix from the (i)th frame to the (i-1)th frame is the same as Eq. (5)
in_ [cos 00; sin 66;
wIR= [— sin 00; cos 06; (4.2)

The position vector of the (i)th node in the (i-1)th frame is
ri=[letdx; Sy,]" (A.3)
And the position vector of the (i)th node in the (X,Y,Z) reference frame is

e R [ [ARIT repo v A4.4)
k=1
er:[R']Txh:[le le]T (A.5)

The applied external force is modified as below

;[0 CF 1<i<10
fexe= {[o C,]" 11<i<20 (4.6)
and the external torque equals
M. =0 e, (A.7)
Then, the force vector on the (i)th node with respect to the (i-1)th frame is defined as
following
L (A.8)
i-1
R | [WdR o o il (4.9)

k=1
Also, the torque applied on the (i)th node is calculated as
Mi=my,={M, H{r;}x{f;} , i#n (4.10)
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M, =M (A.11)
Finally, the load vector on the (i)th node in the (i-1)th frame is cast in the following form,
Wi=[fi my]" (A4.12)
And the equilibrium equation can be presented
In which A; is the deformation vector of the (i)th node in the (i-1)th frame, namely,
A=[8%; By, 86T (A.14)
and K; is the stiffness matrix. The set of key equations for the (i)th element can be derived as:
AFK'W; (A.15)

As a result, a system of 60 nonlinear equations with 62 unknowns is obtained.

Due to defining two extra unknowns (0, and C,), two extra equations must be added to Eq.
(A.15). For this purpose, the geometrical boundary conditions must be taken into account.
Since the beam has simple- simple boundary conditions, the torque on point A is zero,
therefore,

XNZO Cy_XNl()F:O (A 16)
Also, the displacement of the point B (N,,) along Y-axis is zero which results in
YNy, 0 (A.17)

Eg. (A.15), Eq. (A.16) and Eq. (A.17) together, form system of form a system of 62 equations
with 62 unknowns which can be solved numerically.
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