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1 Introduction 

 
The flow and heat transfer characteristics of fluid over stretching plates have attracted the 

interest of many researchers in recent times. This is due to their several applications in 

engineering such as foodstuff processing, reactor fluidization, extrusion, melt spinning, glass-

fibre production processes, food processing, mechanical forming processes, wire and fiber 

coating, cooling of metallic plates, drawing of a polymer sheet, aerodynamic, aeronautics, 

cooling of gas turbine rotor blades,  extrusion of plastic sheets, continuous casting, rolling, 

annealing, and tinning of copper wires.  
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Insight into the Boundary Layer Flows of Free 

Convection and Heat Transfer of Nanofluids Over a 

Vertical Plate using Multi-Step Differential 

Transformation Method 
This paper presents an insight into the boundary layer of free 

convection and heat transfer of nanofluids over a vertical plate 

at very low and high Prandtl number.  Suitable similarity 

variables are used to convert the governing systems of 

nonlinear partial differential equations of the flow and heat 

transfer to systems of nonlinear ordinary differential equations 

which are solved using multi-step differential transformation 

method. The approximate analytical solutions are verified with 

numerical solutions. From the parametric studies, it is 

observed that the velocity and temperature of the nanofluid 

decreases and increases, respectively as the Prandtl number 

and volume-fraction of the nanoparticles in the base fluid 

increase.  Also, the decrease in velocity and increase in 

temperature are highest in lamina shaped nanoparticle 

followed by platelets, cylinder, bricks and sphere shaped 

nanoparticles, respectively. Using a common base fluid to all 

the nanoparticle type, it is observed that the decrease in 

velocity and increase in temperature are highest TiO2 followed 

by CuO, Al2O3 and SWCNTs nanoparticles, in that order. The 

present study will enhance the understanding of free 

convection boundary-layer problems. 
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In the extrusion process, this understanding is crucial for maintenance of the surface quality of 

the extrudate. The coating process requires a smooth surface for the best product appearance 

and for such properties as low friction, transparency, and strength. As the quality of product in 

the extrusion processes depends considerably on the flow and heat transfer characteristics of a 

thin liquid film over a stretching sheet, analysis of momentum and heat transfer in such 

processes is essential. Therefore, in the study of free convection and heat transfer problems, the 

analysis of incompressible laminar flow of viscous fluid in a steady state, two-dimensional free 

convection boundary-layer has over the years been a common area of increasing research 

interests following experimental investigations of Schmidt and Beckmann [1] and the 

pioneering theoretical work of Ostrach et al. [2].  

In their attempt to study the laminar free convection flow and heat transfer problem in (1953), 

Ostrach et al. [2] applied method of iterative integration to analyze free convection over a semi-

infinite isothermal flat plate. The author obtained the numerical solutions for a wide range of 

Prandtl numbers from 0.01 to 1000 and validated their numerical results using experimental 

data of Schimdt and Beckmann [1]. Five years later, Sparrow and Gregg [3] presented a further 

study on numerical solutions for laminar free convection from a vertical plate with uniform 

surface heat flux. Considering the fact that the major part of low Prandtl-number boundary layer 

of free convection is inviscid, Lefevre [4] examined the laminar free convection of an inviscid 

flow from a vertical plane surface. In a further work, Sparrow and Gregg [5] developed similar 

solutions for free convection from a non-isothermal vertical plate.  

Meanwhile, a study on fluid flow over a heated vertical plate at high Prandtl number was 

presented by Stewartson and Jones [6].  Due to the disadvantages in the numerical methods in 

the previous studies [2, 3], Kuiken [7] adopted method of matched asymptotic expansion and 

established asymptotic solutions for large Prandtl number free convection. In the subsequent 

year, the same author applied the singular perturbation method and analyzed free convection at 

low Prandtl numbers [8]. Also, in another work on the asymptotic analysis of the same problem, 

Eshghy [9] studied free-convection boundary layers at large Prandtl number while Roy [10] 

investigated free convection for uniform surface heat flux at high Prandtl number. With the 

development of asymptotic solution using perturbation method, a combined study of the effects 

of small and high Prandtl numbers on the viscous fluid flow over a flat vertical plate was 

submitted by Kuiken and Rotem [11].  

However, the requirement, searching and exertness of small parameter in the equations make 

the perturbation methods limited in applications. Therefore, Na and Habib [12] applied 

parameter differentiation method to solve the free convection boundary layer problem. Few 

years later, Merkin [13] presented the similarity solutions for free convection on a vertical plate 

while Merkin and Pop [14] used finite difference method to develop numerical solutions for 

conjugate free convection problem of boundary-layer flow over a vertical plate. Also, Ali et al. 

[15] submitted a study on numerical investigation of free convective boundary layer in a viscous 

fluid. The various analytical and numerical studies of the past works have shown that the 

boundary layer problems are very difficult to solve because besides having very thin regions 

where there is rapid change of the fluid properties they are defined on unbounded domains. 

Although, analytical methods are used to solve boundary layer problems, they converge very 

slowly for some boundary layer problems, particularly those with very large parameters.  

The numerical methods used also encounter problems in resolving the solution of the governing 

equations in the very thin regions and in cases where singularities or multiple solutions exist. 

Additionally, intensive computer time is required to solve the problem using numerical 

methods. Consequently, it is often costly and time consuming to get a complete curve of results 

with these methods. Furthermore, the numerical methods are based on discrete techniques and 

as a result, only the calculations of the approximate solutions for some values of time and space 

variables are carried out and some important phenomena of the problem can be overlooked. 
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Therefore, it is absolutely required that the stability and convergence analysis should be carried 

so as to avoid divergence or inappropriate results.   

In recent times, various new mathematical techniques have been developed for providing 

approximate analytical solutions to nonlinear problems. These methods include Adomian 

decomposition method (ADM), homotopy perturbation method (HPM), variation iteration 

method (VIM), differential transformation method (DTM), variation of parameter method 

(VPM), homotopy analysis method (HAM) etc. In the quest of presenting symbolic solutions 

to the flow and heat transfer problem using one of the recently developed semi-analytical 

methods, Motsa et al. [16] adopted homotopy analysis method to solve the free convection 

boundary layer flow with heat and mass transfer. In another work, the authors applied spectral 

local linearization approach for solving the natural convection boundary layer flow [17] while 

Ghotbi et al. [18] developed analytical solutions to the natural convection boundary layer flow 

using homotopy analysis method.  Although, the homotopy analysis method (HAM) is a very 

reliable and efficient semi-analytical technique, it suffers from a number of limiting 

assumptions such as the requirements that the solution ought to conform to the so-called rule 

of solution expression and the rule of coefficient ergodicity.  

Also, the use of HAM in the analysis of linear and nonlinear equations requires the 

determination of auxiliary parameter which will increase the computational cost and time. 

Additionally, the lack of rigorous theories or proper guidance for choosing initial 

approximation, auxiliary linear operators, auxiliary functions, and auxiliary parameters limits 

the applications of HAM.  Moreover, such method requires high skill in mathematical analysis 

and the solution comes with large number of terms. 

The relative simplicity coupled with ease of applications of differential transformation method 

(DTM) has proven that the method is more effective than most of the other approximate 

analytical methods. The differential transformation method as introduced by Ζhou [19] has fast 

gained ground as it appeared in many engineering and scientific research papers. This is 

because, with the applications of DTM, a closed form series solution or approximate solution 

can be provided for nonlinear integral and differential equations without linearization, 

analytical integration, restrictive assumptions, perturbation, evaluation of the Lagrangian 

multiplier, difficult computation for finding the Adomian polynomials and discretization or 

round-off error.  It reduces complexity of expansion of derivatives and the computational 

difficulties of the other traditional or recently developed methods.   

Therefore, Yu and Chen [20] applied the differential transformation method to provide 

approximate analytical solutions to Blasius equation. Also, Kuo [21] adopted the same method 

to determine the velocity and temperature profiles of the Blasius equation of forced convection 

problem for fluid flow passing over a flat plate. An extended work on the applications of 

differential transformation method to free convection boundary-layer problem of two-

dimensional steady and incompressible laminar flow passing over a vertical plate was presented 

by the same author [22]. However, in the later work, the nonlinear coupled boundary value 

equations governing the flow and heat transfer processes are reduced to initial value equations 

by a group of transformation and the resulting coupled initial-value equations are solved by 

means of the differential transformation method.  The reduction or the transformation of the 

boundary value problems to the initial value problems was carried out due to the fact that the 

developed systems of nonlinear differential equations contain an unbounded domain of infinite 

boundary conditions. Moreover, in order to obtain the numerical solutions that are valid over 

the entire large domain of the problem, Ostrach et al. [2] has earlier estimated the values of

   0  and 0f    during the analysis of the developed systems of fully coupled nonlinear 

ordinary differential equations. Following the Ostrach et al’s approach, most of the subsequent 

solutions provided in literature [3, 9, 10, 12, 14, 15, 21, and 22] were based on the estimated 

boundary conditions given by Ostrach et al [1].  
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Additionally, there are the limitations of power series solutions to small domain values of the 

independent variable(s).  Consequently, the DTM solutions diverge for some differential 

equations that extremely have nonlinear behaviors or have boundary-conditions at infinity. 

However, in some recent studies, the use of power series methods coupled with Padé-

approximant technique have shown to be very effective way of developing accurate analytical 

solutions to nonlinear problems of large or unbounded domain problems of infinite boundary 

conditions. Therefore, in a recent work, Rashidi et al. [23] applied differential transformation 

method coupled with Padé-approximant technique to develop a novel analytical solution for 

mixed convection about an inclined flat plate embedded in a porous medium. Although, the 

application of Padé-approximant technique with power series method increases the rate of 

convergence and the radius of convergence of power series solution, it comes with large volume 

of calculations and computations. Therefore, in some recent studies on boundary-layer flows 

[24-39], the nonlinear equations are solved by new semi-analytical schemes which include the 

multi-step differential transform method (MDTM). The  main  advantage of MDTM is  that it 

can be applied directly to nonlinear differential equations of infinite boundary conditions 

without the use of after-treatment techniques and domain transformation techniques. By 

applying the MDTM, the interval of convergence for the series solution is increased. The 

MDTM is treated as an algorithm in a sequence of intervals for finding accurate approximate 

solutions for systems of differential equations.  

The previous studies on the problem under investigation are based on the flow of viscous fluid 

as shown in the above review. To the best of the author’s knowledge, a study on the influence 

of nanoparticle shape, size and type on the free convection boundary-layer flow and heat 

transfer of nanofluids over a vertical plate at low and high Prandtl numbers using multi-step 

differential transformation method has not been carried out.  Therefore, the present study 

demonstrates the application of multi-step differential transformation method to develop 

approximate analytical solutions for the free convection boundary-layer flow and heat transfer 

of nanofluids of different nano-size particles over a vertical plate at low and high Prandtl 

numbers.  Another novelty of the present study is displayed in the development of approximate 

analytical solutions for the free convection boundary layer problem without the use of the 

estimated boundary conditions    0  and 0f   during the analysis of the problem. 

 

 

 

  

Figure 1 Velocity and temperature profiles in free convection flow over a vertical plate [20] 
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2   Problem Formulation and Mathematical analysis 

  

Consider a laminar free-convection flow of an incompressible nanofluid over a vertical plate 

parallel to the direction of the generating body force as shown in Fig. (1). Assuming that the 

flow in the laminar boundary layer is two-dimensional and steady, the equations for continuity 

and motion are given as 
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Assuming no slip conditions, the appropriate boundary conditions are given as 

 0, 0, 0su v T T at y     (4a)
 

 0, ,wu T T at y    (4b)
 

 

                 Table 1 The values of different shapes of nanoparticles [28, 29] 

S/N                  Name                                   Shape                 Shape factor (m)          Sphericity(ψ) 

 

 1                  Sphere                                                                     3.0                 1.000 

                         

  2                   Platelet                                                                   5.7                0.526                    

                     

  3                  Cylinder                                                                   4.8               0.625 

 

    4                Lamina                                          16.2             0.185 

 

    5                  Brick                                                                       3.7             0.811 
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Where the various physical and thermal properties in the Eq. (1-3) are given as 
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where m in the above Hamilton Crosser’s model in Eq. (6)  is the shape factor which numerical values 

for different shapes are given in Table (1). It should be noted that the shape factor relates with the 

sphericity by
3

m


 , where λ is the sphericity (the ratio of the surface area of the sphere and 

the surface area of the real particles with equal volumes) [28, 29]. For sphericity of sphere, 

platelet, cylinder, laminar and brick are 1.000, 0.526, 0.625, 0.185 and 0.811, respectively.  The 

Hamilton Crosser’s model becomes a Maxwell-Garnett’s model, when the shape factor of the 

nanoparticle, m=3. Table (2) and (3) present the physical and thermal properties of the base 

fluid and the nanoparticles, respectively. SWCNTs mean single-walled carbon nanotubes. 

Going back to Eq. (1), (2) and (3) and if one introduces a stream function,  ,x y  such that 
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and use the following similarity and dimensionless variables 
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Table 2  Physical and thermal properties of the base fluid 

[28-33] 
Base fluid ρ (kg/m3) cp ( J/kgK) k (W/mK) 

Pure water 997.1 4179 0.613 

Ethylene Glycol 1115 2430 0.253 

Engine oil 884 1910 0.144 

Kerosene 783 2010 0.145 
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Table 3  Physical and thermal properties of nanoparticles [28-33] 

Nanoparticles ρ (kg/m3) cp ( J/kgK) k (W/mK) 

Copper (Cu) 8933 385 401 

Aluminum oxide (Al2O3) 3970 765 40 

SWCNTs 2600 42.5 6600 

Silver (Ag) 10500 235.0 429 

Titanium dioxide (TiO2) 4250 686.2 8.9538 

Copper (II) Oxide (CuO) 783 540 18 

 

one arrives at fully coupled third and second orders ordinary differential equations 
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and the boundary conditions as 

 0, 0, 1,  0f f when      

0, 0,  f when       
(11)

 

It should be noted that for a viscous fluid which does not have nanoparticles, the nanoparticle 

volume fraction is zero i.e.  ϕ=0 and then one recovers the earlier models [2-15] from Eq. (9) 

and (10) which are 

  
2

3 2 0f ff f        (12)
 

 3 0Prf     (13) 

and the boundary conditions remain the same as in Eq. (11) 

 

3  Basic Concepts of differential transform method 

The relatively new semi-analytical method, differential transformation method introduced by 

Zhou [19] has proven proved very effective in providing highly accurate solutions to differential 

equations, difference equation, differential-difference equations, fractional differential 

equation, pantograph equation and integro-differential equation. Therefore, this method is 

applied to the present study. The basic definitions and the operational properties of the method 

are as follows: 

     If )(tu  is analytic in the domain T, then the function ( )u t  will be differentiated continuously 

with respect to time t. 

 ( )
( , )

p

p

d u t
t p

dt
  for all Tt  (14)
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for itt  , then ( , ) ( , )it p t p   , where p belongs to the set of non-negative integers, denoted 

as the p-domain. We can therefore write Eq. (14) as  

 ( )
( ) ( , )
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i p

t t

d u t
U p t p

dt
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Where pU  is called the spectrum of )(tu  at 
itt  . Expressing )(tu in Taylor’s series as  
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Where  Equ. (14) is the inverse of )(kU  us symbol ‘D’ denoting the differential transformation process 

and combining (15) and (16), we have 
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4  Basic Concepts of Multi-Step differential transform method 

 

The limitation of classical DTM is shown when is being used for solving differential equations 

with the boundary conditions at infinity i.e. the obtained series solution through the DTM for 

such equation with the boundary condition become divergent. Besides that, generally, power 

series solutions are not useful for large values of the independent variable. In order to overcome 

this shortcoming, the multi-step DTM is developed. The basic concepts of the multi-step DTM 

for solving non-linear initial-value problem is presented as follows, 

   , , ,... 0,
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subject to the initial conditions  

    0 , 0,1,... 1.
k
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Let  0, T be the interval over which we want to find the solution of the initial value problem 

of Eq. (18). In actual application of the DTM, the approximate solution of the initial value 

problem of Eq. (18) can be expressed by the following finite series: 
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The multi-step approach introduces a new idea for constructing the approximate solution. 

Assume that the interval  0, T is divided into N subintervals  1 , ,i it t 1,2,...,i N of equal 

step size / NH T by using the nodes t iH . The main idea of the multi-step DTM is as 

follows. First, we apply the DTM to Eq. (18) over the interval  10, ,t we will obtain the 

following approximate solution, 
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Table 4  Operational properties of differential transformation method 

S/N Function Differential transform 
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in Eq. (15) is replaced by 1it  . The process is repeated and generates a 

sequence of approximate solution  if t , i =1, 2,…, N, for the solution  f t , 
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Where M K N  . In fact, the multi-step DTM assumes the following solution: 
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which shows that there is a separate function for every sub domain. Following the above 

definition, is could be stated that the multi-step DTM for every sub-domain is defined as 
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The inverse multi-step DTM is  
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The new algorithm, multi-step DTM is simple for computational performance for all values of 

H. It is easily observed that if the step size H T , then the multi-step DTM reduces to the 

classical DTM. Using the operational properties of the differential transformation method, the 

differential transformation of the governing differential Eq. (9) is given as  
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Equivalently, we can write the recussive relation for Eq. (26) in DTM domain as 
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For the Eq.(10), we have the recursive relation in differential transform domain as 
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which can be written as  

                

 

 
  

     

     
   

     
0

1 11

13 12
1 2

1 1

s f f s

s f f s
p ps f

p

l

k m k m k k

k m k k kPr C Cp
p p

l l F p l



   



  
       
   

                       
 
    
 
 


 
(29)

 

Also, recursive relation for the boundary conditions in Eq.(12) are 
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Where  a  and b are unknown constants which will be found later. It should be noted that the 

transformations which included “ a ” and “b” are established from values of

   0 =  and 0f a b   . From Eq. (28), we have the following boundary conditions in 

differential transform domain 

                

        0 0, (1) 0, 0 1, 2 , 1
2

a
F F F b       (31)

 

                                                                                                                                                      

Using p=0, 1, 2, 3, 4, 5, 6, 7… in the above recursive relations in Eq. (28), we arrived at 
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In the same manner, the expressions for F[11], F[12], F[13], F[14], F[15] are found but they 

are too  large to be included in this paper. Also, using p=0, 1, 2, 3… in the above recursive 

relations in Eq. (29), we arrived at following solutions 
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In the same manner, the expressions for  11 ,  12 ,  13 ,  14 ,  15 … are found but 

they are too  large to be included in this paper. From the definition in Eq. (17), the solutions of 

Eqs. (10) and (11) are given as 

   2 3 4 5

6 7 8 9 10

[0] [1] [2] [3] [4] [5]

          [6] [7] [8] [9] [10] ...

f F F F F F F

F F F F F

     

    

      

      
 (32)

 

   2 3 4 5

6 7 8 9 10

[0] [1] [2] [3] [4] [5]

          [6] [7] [8] [9] [10] ...

      

    

            

           
 (33) 

Now, consider similar fully coupled third and second orders ordinary differential equations 

presented in Eqs. (9) and (10), but at this time, we take a =1 and b=1 
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With initial conditions as 

 

 0, 0, 1, 1, 1  0g g g when           (36)
 

 

Following the similar solution procedures of Eqs. (9) and (10), the solutions of Eqs. (34) and 

(35) are 

 

   2 3 4

6 7 8 9 10
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   2 3 4 5

6 7 8 9 10
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The functions in Eq. (32) and (33) and that in Eq. (37) and (38) have relations as follows: 

           k q k q q k qf a g a f a g a f a g             
 

and
 

       r s rb b b           

From Eq. (11),    =0 and 0 f     . Since    0 and 0 0 and 0a b g        . 

 

5  Applying Multi-Step DTM 

 

To solve the boundary layer problems, the domain [0, ) is replaced by [0, η ͚). But η ͚ should 

be great enough that the solution is not dependent on. The solution domain should be divided 

to N equal parts (H= η ͚/N). So, we have 
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Applying multi-step DTM on Eq. (39) and Eq. (40) 
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(42)
 

The initial conditions for the problem are considered for the first sub domain (i =1). Followng 

Eq. (23), the differential transform for the initial conditions for Eq. (34) and (35) and for Eqs. 

(41) and (42) are 
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 (43) 

The boundary conditions of each subdomain are continuity of the 

          , , , ,   i i i i i i ig g g and          (44) 

These boundary conditions can be obtained from Eq. (25):  

          , , , ,   i i i i i i ig g g and          (44) 
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The values of the     and g    
 can be calculated by differentiating from Eq. (24) 
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 (47) 

Now, Eq. (9) and (10) are solved with a similar process like Eqs. (34) and (35) using multi-step 

DTM. The only difference is that the condition  0f a  is replaced by the condition  0 1g 

It should be noted as mentioned previously that the unknown parameters “a” and “b” in the 

solutions are unknown constants. The infinite boundary conditions i.e. , 0, 0f   

are applied. The resulting simultaneous equations are solved to obtain the values of a and b for 

the respective values of the physical and thermal properties of the nanofluids under 

considerations.  

 

6   Flow and heat transfer parameters 

 

In addition to the determination of the velocity and temperature distributions, it is often 

desirable to compute other physically important quantities (such as shear stress, drag, heat 
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transfer rate and heat transfer coefficient) associated with the free convection flow and heat 

transfer problem. Consequently, two parameters, a flow parameter and a heat transfer 

parameter, are computed. The local heat transfer coefficient at the surface of the vertical plate 

can be obtained from 

 

6.1 Fluid flow parameter 

 

Skin friction coefficient 
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After the dimensionless exercise,  
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6.2 Heat transfer parameter 
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6.3 The local Nusselt number  

 

The local Nusselt number is 
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Where   
 0

2
Pr





  is a function of Prandtl number. The dependence of  on the Prandtl 

number is evidenced by Eq. (51). It could also be shown that 
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Where  
xRe  and 

xGr are the local Reynold and Grashof numbers defined as: 

  3

3
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7   Results and Discussion 

 

Tables (5-22) present various comparisons of results of the present study and the past works for 

viscous fluid i.e. when the volume fraction of the nanoparticle is zero (ϕ=0). It could be seen 

from the Tables that there are excellent agreements between the past results and the present 

study. Moreover, the Tables present the effects of Prandtl number on the flow and heat transfer 

processes. 
 

Table 5 Comparison of results for the skin friction parameter 

 0f   

Pr Sparrow 

& Gregg [5] 

Kuiken[8] Present study Residue on [5] Residue on [8] 

0.003 1.0223 1.0151 1. 0224 0.0001  0.0073 

0.008 0.9955 0.9801 0.9955 0.0000 0.0154 

0.020 0.9590 0.9284 0.9591 0.0001 0.0307 

0.030 0.9384 0.8966 0.9384 0.0000 0.0418 
  
 

Table 6 Comparison of results of   f   

 f   

Pr Sparrow 

& Gregg [5] 

Kuiken[8] Present study Residue on [5] Residue on [8] 

0.003 8.7060 8.8763 8.7061 0.0001 0.1702 

0.008 5.4018 5.4152 5.4018 0.0000 0.0134 

0.020 3.4093 3.4055 3.4093 0.0000 0.0038 

0.030 2.7878 2.7710 2.7878 0.0000 0.0168 
   

 

     Table 7 Comparison of results of   0  

   
1

2 4/ 0x xNu G Pr    

Pr Sparrow 

& Gregg [5] 

Kuiken[8] Present study Residue on [5] Residue on [8] 

0.003 8.7060 8.8763 8.7061 0.0001 0.1702 

0.003 0.5827 0.5827 0. 5827 0.0000 0.0000 

0.008 0.5729  0.5714 0.5728 0.0001 0.0014 

0.020 0.5582 0.5546 0.5582 0.0000 0.0036 

0.030 0.5497 0.5443 0.5497 0.0000  0.0054 
 

  

        Table 8 Comparison of results of  f  ,  f   and  f  at Pr=0.01  

    f                                           f                                          f    

η Ostrach[2] Present study Ostrach[2] Present study Ostrach[2] Present study 

0.0 0.0000 0.0000 0.0000 0.0000 0.9862 0.9845 

1.0 0.3376 0.3376 0.5379 0.5379 0.1734 0.1734 

2.0 0.9023 0.9023 0.5535 0.5535 0.0641 0.0641 

3.0 1.4200 1.4200 0.4810 0.4810 0.0719 0.0719 

4.0 1.8665 1.8665 0.4136 0.4136 0.0629 0.0629 

5.0 2.2501 2.2501 0.3548 0.3548 0.0549 0.0549 

6.0 2.5787 2.5787 0.3035 0.3035 0.0479 0.0479 

7.0 2.8593 2.8593 0.2586 0.2586 0.0419 0.0419 

9.0 3.2999 3.2999 0.1853 0.1853 0.0319 0.0319 

11 3.6123 3.6123 0.1297 0.1297 0.0241 0.0241 

13 3.8276 3.8276 0.0877 0.0877 0.0181 0.0181 

16 4.0204 4.0204 0.0441 0.0441 0.0114 0.0114 

20 4.1226 4.1226 0.0108 0.0108 0.0057 0.0057 
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22 4.1343 4.1343 0.0015 0.0015 0.0037 0.0037 
 

Table 9   Comparison of results of  f  ,  f   and  f  at Pr=1 

                           f                                            f                                        f   

η Ostrach [2] Present study Ostrach [2] Present study Ostrach [2] Present study 

0.0 0.0000 0.0000 0.0000 0.0000 0.6421 0.6421 

1.0 0.1809 0.1809 0.2502 0.2502 -0.0263 -0.0263 

2.0 0.3859 0.3859 0.1450 0.1450 -0.1233 -0.1233 

3.0 0.4791 0.4791 0.0524 0.0524 -0.0602 -0.0602 

4.0 0.5096 0.5096 0.0151 0.0151 -0.0202 -0.0202 

5.0 0.5177 0.5177 0.0035 0.0035 -0.0057 -0.0057 

6.0 0.5194 0.5194 0.0004 0.0004 -0.0014 -0.0014 
 

Table 10 Comparison of results of  f  ,  f   and  f  at Pr=2 

 
                f                                         f                                     f   

η Ostrach[2] Present study Ostrach[2] Present study Ostrach[2] Present study 

0.0 0.0000 0.0000 0.0000 0.0000 0.5713 0.5712 

1.0 0.1508 0.1508 0.1994 0.1994 -0.0440 -0.0440 

2.0 0.3066 0.3066 0.1050 0.1050 -0.0960 -0.0960 

3.0 0.3731 0.3731 0.0373 0.0373 -0.0416 -0.0416 

4.0 0.3953 0.3953 0.0018 0.0018 -0.0138 -0.0138 

5.0 0.4023 0.4023 0.0037 0.0037 -0.0042 -0.0042 

7.0 0.4053 0.4053 0.0005 0.0005 -0.0004 -0.0004 

8.0 0.4056 0.4056 0.0002 0.0002 -0.0001 -0.0001 

 9.0 0.4058 0.4058 0.0001 0.0001 0.0000 0.0000 

10.0 0.4059 0.4059 0.0001 0.0001 0.0000 0.0000 

11.0 0.4059 0.4059 0.0001 0.0001 0.0000 0.0000 
 

Table 11 Comparison of results of  f  ,  f   and  f  at Pr=10 

 
                 f                                       f                                         f   

  η Ostrach[2] Present study Ostrach[2] Present study Ostrach[2] Present study 

0.0 0.0000 0.0000 0.0000 0.0000 0.4192 0.4191 

1.0 0.0908 0.0908 0.1066 0.1066 -0.0462 -0.0462 

2.0 0.1714 0.1714 0.0567 0.0567 -0.0400 -0.0400 

3.0 0.2119 0.2119 0.0276 0.0276 -0.0201 -0.0201 

4.0 0.2314 0.2314 0.0132 0.0132 -0.0098 -0.0098 

5.0 0.2408 0.2408 0.0063 0.0063 -0.0047 -0.0047 

7.0 0.2474 0.2474 0.0014 0.0014 -0.0011 -0.0011 

8.0 0.2484 0.2484 0.0007 0.0007 -0.0005 -0.0005 

 9.0 0.2489 0.2489 0.0003 0.0003 -0.0002 -0.0002 

10.0 0.2491 0.2491 0.0002 0.0002 -0.0001 -0.0001 
 

Table 12  Comparison of results of  f  ,  f   and  f  at Pr=100  

                     f                                      f                                       f   

η Ostrach[2] Present study Ostrach[2] Present study Ostrach[2] Present study 

0.0 0.0000 0.0000 0.0000 0.0000 0.2517 0.2517 

1.0 0.0371 0.0371 0.0385 0.0385 -0.0140 -0.0140 

2.0 0.0692 0.0692 0.0265 0.0265 -0.0101 -0.0101 

3.0 0.0912 0.0912 0.0180 0.0180 -0.0071 -0.0071 

4.0 0.1061 0.1061 0.0121 0.0121 -0.0049 -0.0049 

6.0 0.1226 0.1226 0.0053 0.0053 -0.0022 -0.0022 

8.0 0.1297 0.1297 0.0022 0.0022 -0.0010 -0.0010 

9.0 0.1315 0.1315 0.0014 0.0014 -0.0007 -0.0007 

10.0 0.1326 0.1326 0.0008 0.0008 -0.0005 -0.0005 

11.0 0.1332 0.1332 0.0004 0.0004 -0.0003 -0.0003 
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12.0 0.1335 0.1335 0.0002 0.0002 -0.0002 -0.0002 

13.0 0.1336 0.1335 0.0000 0.0000 -00001 -0.0001 

Table 13  Comparison of results of ,   and  at Pr=1000  

                  f                              f                              f   

η Ostrach[2] Present study Ostrach[2] Present study Ostrach[2] Present study 

0.0 0.0000 0.0000 0.0000 0.0000 0.1450 0.1450 

1.0 0.0135 0.0135 0.0136 0.0136 -0.0027 -0.0027 

3.0 0.0358 0.0358 0.0090 0.0090 -0.0019 -0.0019 

5.0 0.0912 0.0912 0.0180 0.0180 -0.0071 -0.0071 

7.0 0.0603 0.0603 0.0039 0.0039 -0.0008 -0.0008 

8.0 0.0638 0.0638 0.0032 0.0032 -0.0007 -0.0007 

10.0 0.0691 0.0691 0.0022 0.0022 -0.0004 -0.0004 

12.0 0.0727 0.0727 0.0015 0.0015 -0.0003 -0.0003 

14.0 0.0752 0.0752 0.0011 0.0011 -0.0002 -0.0002 

16.0 0.0771 0.0771 0.0008 0.0008 -0.0001 -0.0001 

18.0 0.0786 0.0786 0.0007 0.0007 0.0000 0.0000 

20.0 0.0798 0.0798 0.0006 0.0006 00000 0.0000 

22.0 0.0809 0.0809 0.0005 0.0005 0.0000 0.0000 

 
 
 
 

Table 14  Comparison of results of    , and     at Pr=0.01 

 
                                                                                   

η Ostrach[2] Present Ostrach[2] Present 

0.0 1.0000 1.0000 -0.0812 -0.0812 

1.0 0.9189 0.9189 -0.0809 -0.0809 

2.0 0.8387 0.8387 -0.0794 -0.0794 

3.0 0.7606 0.7606 -0.0766 -0.0766 

4.0 0.6857 0.6857 -0.0720 -0.0720 

5.0 0.6149 0.6149 -0.0686 -0.0686 

6.0 0.5487 0.5487 -0.0638 -0.0638 

7.0 0.4874 0.4874 -0.0588 -0.0588 

9.0 0.3799 0.3799 -0.0489 -0.0489 

11 0.2915 0.2915 -0.0397 -0.0397 

13 0.2202 0.2202 -0.0317 -0.0317 

16 0.1399 0.1399 -0.0223 -0.0223 

20 0.0894 0.0894 -0.0137 -0.0137 

21 0.0565 0.0565 -0.0121 -0.0121 

22  0.0452 0.0452 -0.0107 -0.0107 

 

 

 

 

Table 15 Comparison of results of    , and     at Pr=1 

 
                                                             

η Ostrach[2] Present study Ostrach[2] Present study 

0.0 1.0000 1.0000 -0.5671 -0.5671 

1.0 0.4638 0.4638 -0.4589 -0.4589 

2.0 0.1422 0.1422 -0.1907 -0.1907 

3.0 0.0339 0.0339 -0.0509 -0.0509 

4.0 0.0072 0.0072 -0.0115 -0.0115 

5.0 0.0014 0.0014 -0.0024 -0.0024 

6.0 0.0002 0.0002 -0.0005 -0.0005  
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Table 16  Comparison of results of    ,and     at Pr=2 

                                                              

η Ostrach[2] Present 

study 

Ostrach[2] Present 

study 

0.0 1.0000 1.0000 -0.7165 -0.7165 

1.0 0.3476 0.3476 -0.5002 -0.5002 

2.0 0.0592 0.0592 -0.1207 -0.1207 

3.0 0.0066 0.0066 -0.0152 -0.0152 

4.0 0.0007 0.0007 -0.0015 -0.0015 

5.0 0.0001 0.0001 -0.0686 -0.0686 

6.0 0.5487 0.5487 -0.0001 -0.0001 

7.0 0.0000 0.0000 0.0000 0.0000 

8.0 0.0000 0.0000 0.0000 0.0000 

9.0  0.0000 0.0000 0.0000 0.0000 

10  0.0000 0.0000 0.0000 0.0000 
 

 

 

 

 

Table 17 Comparison of results of    ,and     at Pr=10 

 
                                                             

η Ostrach[2] Present study Ostrach[2] Present study 

0.0 1.0000 1.0000 -1.1694 -1.1694 

1.0 0.1090 0.1090 -0.3753 -0.3753 

2.0 0.0012 0.0012 -0.0065 -0.0065 

3.0 0.0000 0.0000 0.0000 0.0000 

4.0 0.0000 0.0000 0.0000 0.0000 

5.0 0.0000 0.0000 0.0000 0.0000 

7.0 0.0000 0.0000 0.0000 0.0000 

8.0 0.0000 0.0000 0.0000 0.0000 

9.0 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 
  

 

 

 

Table 18 Comparison of results of    ,and     at Pr=100 

 
                                                               

η Ostrach[2] Present study Ostrach[2] Present study 

0.0 1.0000 1.0000 -2.1910 -2.1910 

1.0 0.0012 0.0012 -0.0149 -0.0149 

2.0 0.0000 0.0000 0.0000 0.0000 

3.0 0.0000 0.0000 0.0000 0.0000 

4.0 0.0000 0.0000 0.0000 0.0000 

7.0 0.0000 0.0000 0.0000 0.0000 

8.0 0.0000 0.0000 0.0000 0.0000 

9.0 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 

11 0.0000 0.0000 0.0000 0.0000 

12 0.0000 0.0000 0.0000 0.0000 

13 0.0000 0.0000 0.0000 0.0000 
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Table 19  Comparison of results of    ,and     at Pr=1000  

 
                                                                

η Ostrach [2] Present study Ostrach [2] Present study 

0.0 1.0000 1.0000 -3.9660 -3.9660 

1.0 0.0000 0.0000 0.0000 0.0000 

2.6 0.0000 0.0000 0.0000 0.0000 

3.0 0.0000 0.0000 0.0000 0.0000 

5.0 0.0000 0.0000 0.0000 0.0000 

5.8 0.0000 0.0000 0.0000 0.0000 

7.0 0.0000 0.0000 0.0000 0.0000 

8.0 0.0000 0.0000 0.0000 0.0000 

10 0.0000 0.0000 0.0000 0.0000 

20 0.0000 0.0000 0.0000 0.0000 

22 0.0000 0.0000 0.0000 0.0000 

23 0.0000 0.0000 0.0000 0.0000 
 

 

 

 

Table 20 Comparison of results of  f   and     at different Prandtl numbers 

 Kuo[22]  Na and Hibb[12] Present study 

Pr  0f    0   0f    0   0f    0  

0.72 0.6760 -0.5046 0.6760 -0.5046 0.6760 -0.5046 

0.60 0.6947 -0.4721 0.6946 -0.4725 0.6947 -0.4721 

0.50 0.7132 -0.4411 0.7131 -0.4420 0.7132 -0.4411 

0.40 0.7356 -0.4053 0.7354 -0.4066 0.7356 -0.4053 

0.30 0.7636 -0.3623 0.7633 -0.3641 0.7636 -0.3623 

0.20 0.8015 -0.3078 0.8009 -0.3101 0.8015 -0.3078 

0.10 0.8600 -0.2298 0.8590 -0.2326 0.8600 -0.2298 

0.06 0.8974 -0.1834 0.8961 -0.1864 0.8974 -0.1834 

0.04 0.9233 -0.1526 0.9221 -0.1556 0.9233 -0.1526 

0.01 0.9845 -0.0832 0.9887 -0.0817 0.9885 -0.0832 

       

1.00 0.6421 -0.5671 0.6421 -0.5671 0.6421 -0.5671 

1.10 0.6323 -0.5862 0.6323 -0.5860 0.6323 -0.5862 

1.20 0.6233 -0.6040 0.6234 -0.6036 0.6233 -0.6040 

1.30 0.6151 -0.6208 0.6152 -0.6202 0.6151 -0.6208 

1.40 0.6075 -0.6365 0.6076 -0.6358 0.6075 -0.6365 

1.50 0.6005 -0.6515 0.6006 -0.6506 0.6005 -0.6515 

1.60 0.5939 -0.6656 0.5940 -0.6646 0.5939 -0.6656 

1.70 0.5877 -0.6792 0.5879 -0.6780 0.5877 -0.6792 

1.80 0.5819 -0.6921 0.5821 -0.6908 0.5819 -0.6921 

1.90 0.5764 -0.7045 0.5767 -0.7031 0.5764 -0.7045 

2.00 0.5712 -0.7164 0.5715 -0.7149 0.5712 -0.7164 

2.00 0.5712 -0.7164 0.5713 -0.7165 0.5712 -0.7164 

       

3.00 0.5308 -0.8154 0.5312 -0.8145 0.5308 -0.8154 

4.00 0.5029 -0.8914 0.5036 -0.8898 0.5029 -0.8914 

5.00 0.4817 -0.9539 0.4827 -0.9517 0.4817 -0.9539 

6.00 0.4648 -1.0073 0.4660 -1.0047 0.4648 -1.0073 

7.00 0.4507 -1.0542 0.4522 -1.0512 0.4507 -1.0542 

8.00 0.4387 -1.0961 0.4405 -1.0930 0.4387 -1.0961 

9.00 0.4283 -1.1342 0.4304 -1.1309 0.4283 -1.1342 

10.00 0.4191 -1.1692 0.4215 -1.1658 0.4191 -1.1692 
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Table 21 Comparison of results of  f   at different Prandtl number 

 
 0f   

Pr Kuiken [34] Mosta [17] Present study 

0.001 1.12313813 1.12313813 1.12313813 

0.01 1.06338086 1.06338086 1.06338086 

0.1 0.92408304 0.92408304 0.92408304 

1 0.69321163 0.69321163 0.69321163 

10 0.44711652 0.44711652 0.44711652 

100 0.26452354 0.26452354 0.26452354 

1000 0.15129020 0.15129020 0.15129020 

10000 0.08554085 0.08554085 0.08554085 
 

 

 

 

 

Table 22  Comparison of results of  f   at different Prandtl number 

  0  

Pr Kuiken [34] Mosta et al. [17] Mosta et al. [17] Present study 

0.001 0.04680746 0.04680746 0.04680746 0.04680746 

0.01 0.13576074 0.13576074 0.13576074 0.13576074 

0.1 0.35005967 0.35005967 0.35005967 0.35005967 

1 0.76986120 0.76986120 0.76986119 0.76986121 

10 1.49709921 1.49709921 1.49709921 1.49709921 

100 2.74688550 2.74688550 2.74688549 2.74688550 

1000 4.93494763 4.93494763 4.93494756 4.93494762 

10000 8.80444927 8.80444927 8.80444960 8.80444958 
 

 

 

Although, the nonlinear partial differential equations are the same in all aspects to the present 

problems under investigation, there are slight differences between the transformed nonlinear 

ordinary differential equations in Mosta et al. [17] of Eq. (7) and developed Eq. (12) and (13) in 

this present study (where the volume-fraction of the nanoparticle is set to zero) due to the 

differences in the adopted similarity variables. It is shown that using the multi-DTM  as applied 

in this work to the transformed nonlinear ordinary differential equations in Mosta et al. [17], 

excellent agreements are recorded between the results of the present study and that of Mosta et al. 

[17] and Kuiken [34] as shown in Tables (17) and (18). 

 

      The variations of nanoparticle volume fraction with dynamic viscosity and thermal 

conductivity ratios of Copper (II) Oxide-water nanofluid are shown in Fig (2) and (3), respectively. 

Also, Fig. (3) show the effects of nanoparticle shape on thermal conductivity ratio. It is depicted 

in the figure that the thermal conductivity of nanofluid varies linearly and increases with increase 

in nanoparticle volume fraction. It is also observed that the suspensions of particles with high 

shape factor or low sphericity have higher thermal conductivity ratio of the nanofluid With 

spherical shape nanoparticle have the lowest thermal conductivity ratio and lamina shape 

nanoparticle have the highest thermal conductivity ratio. The effects of the flow and heat transfer 

controlling parameters on the velocity and temperature distributions are shown in Figs. (4–17) for 

different shapes, type and volume-fraction of nanoparticles at Prandtl number of 0.01-1000. 
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Figure 2 Variation of nanofluid dynamic viscosity 

ratio with nanoparticle volume fraction 
Figure 3 Effects of nanoparticle shape on thermal 

conductivity ratio of nanofluid 

 
 

7.1 Effect of nanoparticle volume fraction on nanofluid velocity and temperature distributions 

for different values of Prandtl number 
 

Figs. (4-7) show the effects nanoparticle concentration/volume fraction and Prandtl number on velocity 

and temperature profiles Copper (II) Oxide-water nanofluid. It is indicated in the Figures that as the 

volume-fraction or concentration of the nanoparticle in the nanofluid increases, the velocity decreases. 

However, an opposite trend in the temperature profile is observed i.e. the nanofluid temperature 

increases as the volume-fraction of the nanoparticles in the basefluid increases. This is because, the 

solid volume fraction has significant impacts on the thermal conductivity.   

The increased volume fraction of nanoparticles in basefluid results in higher thermal 

conductivity of the basefluid which increases the heat enhancement capacity of the basefluid. 

Also, one of the possible reasons for the enhancement on heat transfer of nanofluids can be 

explained by the high concentration of nanoparticles in the thermal boundary layer at the wall 

side through the migration of nanoparticles. It should also be stated that the thickness of thermal 

boundary layer rises with increasing the values of nanoparticle volume fraction. This 

consequently reduces the velocity of the nanofluid as the shear stress and skin friction are 

increased.  The figures also show the effects of Prandtl number (Pr) on the velocity and 

temperature profiles. It is indicated that the velocity of the nanofluid decreases as the Pr 

increases but the temperature of the nanofluid increases as the Pr increases.  

This is because the nonofluid with higher Prandtl number has a relatively low thermal 

conductivity, which reduces conduction, and thereby reduces the thermal boundary-layer 

thickness, and as a consequence, increases the heat transfer rate at the surface. For the case of 

the fluid velocity that decreases with the increase of Pr, the reason is that fluid of the higher 

Prandtl number means more viscous fluid, which increases the boundary-layer thickness and 

thus, reduces the shear stress and consequently, retards the flow of the nanofluid.  

Also, it can be seen that the velocity distribution for small value of Prandtl number consist of 

two distinct regions. A thin region near the wall of the plate where there are large velocity 

gradients due to viscous effects and a region where the velocity gradients are small compared 

with those near the wall. In the later region, the viscous effects are negligible and the flow of 

fluid in the region can be considered to be inviscid.  

Also, such region tends to create uniform accelerated flow at the surface of the plate. 
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Figure 4a Effects of Prandtl number  on the  velocity 

profile when  ϕ=0.020 

Figure 4b  Effects of Prandtl number on temperature 

profile when  ϕ=0.020 

 

  

Figure 5a Effects of Prandtl number  on the  velocity 

profile when  ϕ=0.040 
Figure 5b Effects of Prandtl number on temperature 

profile when  ϕ=0.040 

 

 

  

Figure 6a Effects of Prandtl number  on the  velocity 

profile when  ϕ=0.060 

Figure 6b Effects of Prandtl number on temperature 

profile when  ϕ=0.060 
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Figure 7a Effects of Prandtl number  on the  velocity       

profile when  ϕ=0.080 
Figure 7b Effects of Prandtl number on temperature 

profile when  ϕ=0.080 

The use of nanoparticles in the fluids exhibited better properties relating to the heat transfer of 

fluid than heat transfer enhancement through the use of suspended millimeter- or micrometer-

sized particles which potentially cause some severe problems, such as abrasion, clogging, high 

pressure drop, and sedimentation of particles. The very low concentrations applications and 

nanometer sizes properties of nanoparticles in base fluid prevent the sedimentation in the flow 

that may clog the channel. It should be added that the theoretical prediction of enhanced thermal 

conductivity of the base fluid and prevention of clogging, abrasion, high pressure drop and 

sedimentation through the addition of nanoparticles in base fluid have been supported with 

experimental evidences in literature.   

 

 

7.2  Effect of nanoparticle shape on nanofluid velocity and temperature distributions for 

different values of Prandtl number 

 

It has observed experimentally that the nanoparticle shape have significant impacts on the 

thermal conductivity. Therefore, the effects of nanoparticle shape at different values of Prandtl 

number on velocity and temperature profiles of Copper (II) Oxide-water nanofluid are shown 

in Fig. (8-13).  It is indicated that the maximum decrease in velocity and maximum increase in 

temperature are caused by lamina, platelets, cylinder, bricks and sphere, respectively.  

It is observed that lamina shaped nanoparticle carries maximum velocity whereas spherical 

shaped nanoparticle has better enhancement on heat transfer than other nanoparticle shapes.  

In fact, it is in accordance with the physical expectation since it is well known that the lamina 

nanoparticle has greater shape factor than other nanoparticles of different shapes, therefore, the 

lamina nanoparticle comparatively gains maximum temperature than others. The velocity 

decreases is maximum in spherical nanoparticles when compared with other shapes. The 

enhancement observed at lower volume fractions for non-spherical particles is attributed to the 

percolation chain formation, which perturbs the boundary layer and thereby increases the local 

Nusselt number values. 
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Figure 8a  Effect of nanoparticle shape on velocity 

distribution of the nanofluid 
Figure 8b Effects of nanoparticle shape on 

temperature distribution of nanofluid 

 

 

  
Figure 9a  Effects of Prandtl number on velocity  

profile for spherical shape nanoparticle 

 

Figure 9b Effects of Prandtl number on temperature 

profile for spherical shape nanoparticle 

  
Figure 10a  Effects of Prandtl number on velocity  

profile for brick shape nanoparticle 

 

 

Figure 10b  Effects of Prandtl number on 

temperature profile for brick shape nanoparticle 
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Figure 11a  Effects of Prandtl number on velocity  

profile for cylindrical shape nanoparticle 

 

Figure 11b  Effects of Prandtl number on 

temperature profile for cylindrical shape nanoparticle 

 

 

 
 

Figure 12a  Effects of Prandtl number on velocity  

profile for platelet shape nanoparticle 

 

Figure 12b  Effects of Prandtl number on 

temperature profile for platelet shape nanoparticle 

 

 

  
Figure 13a  Effects of Prandtl number on velocity  

profile for lamina shape nanoparticle 

 

Figure 13b Effects of Prandtl number on 

temperature profile for lamina shape nanoparticle 

 
 

It is evident from this study that proper choice of nanoparticles will be helpful in controlling 

velocity and heat transfer. It is also observed that irreversibility process can be reduced by using 

nanoparticles, especially the spherical particles. This can potentially result in higher 

enhancement in the thermal conductivity of a nanofluid containing elongated particles 

compared to the one containing spherical nanoparticle, as exhibited by the experimental data in 

the literature.   
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7.3 Effect of type of nanoparticle on nanofluid velocity and temperature distribution for 

different values of Prandtl number 

 

The variations of the velocity and temperature profiles against η for various types of 

nanoparticles (TiO2, CuO, Al2O3 and SWCNTs) are shown in Fig. (14-17). Using a common 

basefluid for all the nanoparticle types, it is observed that the maximum decrease in velocity 

and maximum increase in temperature are caused by TiO2, CuO, Al2O3 and SWCNTs, 

respectively. It is observed that SWCNTs nanoparticle carries maximum decreases velocity but 

has better enhancement on heat transfer than other nanoparticle shapes.  

In accordance with the physical expectation well, the SWCNTs nanoparticle has higher thermal 

conductivity than other types of nanoparticles, therefore, the SWCNTs nanoparticle 

comparatively gains maximum temperature than others.  The increased thermal conductivity of 

the base fluid due to the use of nanoparticle of higher thermal conductivity increases the heat 

enhancement capacity of the base fluid. Also, it is observed that the velocity decreases is 

maximum in SWCNTs nanoparticles when compared with other type of nanoparticles.  

 

  
Figure 14a  Effects of Prandtl number on velocity  

profile for TiO2 nanoparticle 

Figure 14b Effects of Prandtl number on temperature 

profile for TiO2 nanoparticle 

 

 

 

  
Figure 15a  Effects of Prandtl number on velocity  

profile for CuO nanoparticle 

Figure 15b  Effects of Prandtl number on 

temperature profile for CuO nanoparticle 
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Figure 16a  Effects of Prandtl number on velocity  

profile for Al2O3 nanoparticle 

 

 

 

Figure 16b  Effects of Prandtl number on 

temperature profile for Al2O3 nanoparticle 

 
 

  
Figure 17a  Effects of Prandtl number on velocity  

profile for SWCNTs nanoparticle 

Figure 17b  Effects of Prandtl number on 

temperature profile for SWCNTs nanoparticle 

 
 

This is because, the solid thermal conductivity has significant impacts on the momentum 

boundary layer of the nanofluid.  The thickness of the momentum boundary layer increases 

with the increase in thermal conductivity. It is observed that the thickness of the thermal 

boundary layer enhances in presence of higher thermal conductivity nanoparticle.  

Therefore, the sensitivity of the boundary layer thickness to the type of nanoparticle is 

correlated to the value of the thermal conductivity of the nanoparticle used which consequently 

leads to enhancement of thermal conductivity of the nanofluid.   

 
Conclusion 

 

In this work, free convection boundary layer flow and heat transfer of nanofluids of different 

shapes nano-size particles over a vertical plate at very low and high values of Prandtl number 

have been analyzed.  The governing systems of nonlinear partial differential equations of the 

flow and heat transfer processes are transformed to system of nonlinear ordinary differential 

equation through similarity variables. The systems of fully coupled nonlinear ordinary 

differential equations have been solved using multi-step differential transformation method. 

The accuracies of the developed analytical solutions were verified with the results generated by 

some other methods as presented in the past works.   
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The developed analytical solutions were used to investigate the effects of Prandtl number, 

nanoparticles size and shapes on the flow and heat transfer behaviour of various nanofluids. 

From the paramtric studies, the following observations were established. 

i. The velocity of the nanofluid decreases as the Prandtl number increases but the 

temperature of the nanofluid increases as the Prandtl number increases.  

ii. The velocity of the nanofluid decreases as the volume-fraction or concentration of 

the nanoparticle in the basefluid increases. However, an opposite trend or behaviour 

in the temperature profile was observed which showed that as the nanofluid 

temperature increases as the volume-fraction of the nanoparticles in the basefluid 

increases. 

iii. The lamina shaped nanoparticle carries maximum velocity whereas spherical shaped 

nanoparticle has better enhancement on heat transfer than other nanoparticle shapes. 

The maximum decrease in velocity and maximum increase in temperature are 

caused by lamina shaped nanoparticle and followed by platelets, cylinder, bricks 

and sphere shaped nanoparticles, respectively.  

iv. Using a common basefluid to all the nanoparticle types considered in this work, it 

was observed that SWCNTs nanoparticle carries maximum decrease in velocity but 

has better enhancement on heat transfer than other nanoparticle shapes. Also, it was 

observed that that the maximum decrease in velocity and maximum increase in 

temperature are caused by TiO2 and followed by CuO, Al2O3 and SWCNTs 

nanoparticles, in that order.  

The present study reveals and exposes the predominant factors as they affect the boundary layer 

of free convection flow and heat transfer of nanofluids.  Moreover, the high level of accuracy 

and versatility of differential transformation method-Padé approximate technique has been 

demonstrated. It is hoped that the present study will enhance the understanding as it provides 

physical insights into the free convection boundary-layer problems. 
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Nomenclature 
 

cp  specific heat capacity 

k thermal conductivity  

m shape factor 

Pr Prandtl number 

u  velocity component in x-direction 

v  velocity component in z-direction 

 y axis perpendicular to plates 

 x axis along the  horizontal direction 

 y axis along the vertical direction 

 

Symbols 

β volumetric extension coefficients 
  density of the fluid 


 dynamic viscosity  
  similarity variable 

 λ sphericity 
  volume fraction or concentration of the nanofluid 

  Dimensionless temperature 

 

Subscript 

f fluid 

s solid 

nf nanofluid 
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