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Insight into the Boundary Layer Flows of Free
Convection and Heat Transfer of Nanofluids Over a
Vertical Plate using Multi-Step Differential

Transformation Method

This paper presents an insight into the boundary layer of free
convection and heat transfer of nanofluids over a vertical plate
M. G. Sobamowo* lat very low and high Prandtl number. Suitable similarity
Assistant Professor [l variables are used to convert the governing systems of
nonlinear partial differential equations of the flow and heat
transfer to systems of nonlinear ordinary differential equations
which are solved using multi-step differential transformation
method. The approximate analytical solutions are verified with
numerical solutions. From the parametric studies, it is
observed that the velocity and temperature of the nanofluid
decreases and increases, respectively as the Prandtl number
and volume-fraction of the nanoparticles in the base fluid
A. A Yinusa' fllincrease. Also, the decrease in velocity and increase in
temperature are highest in lamina shaped nanoparticle
followed by platelets, cylinder, bricks and sphere shaped
nanoparticles, respectively. Using a common base fluid to all
the nanoparticle type, it is observed that the decrease in
velocity and increase in temperature are highest TiO2 followed
by CuO, Al203 and SWCNTs nanoparticles, in that order. The
present study will enhance the understanding of free

convection boundary-layer problems.

Instructor
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1 Introduction

The flow and heat transfer characteristics of fluid over stretching plates have attracted the
interest of many researchers in recent times. This is due to their several applications in
engineering such as foodstuff processing, reactor fluidization, extrusion, melt spinning, glass-
fibre production processes, food processing, mechanical forming processes, wire and fiber
coating, cooling of metallic plates, drawing of a polymer sheet, aerodynamic, aeronautics,
cooling of gas turbine rotor blades, extrusion of plastic sheets, continuous casting, rolling,
annealing, and tinning of copper wires.
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In the extrusion process, this understanding is crucial for maintenance of the surface quality of
the extrudate. The coating process requires a smooth surface for the best product appearance
and for such properties as low friction, transparency, and strength. As the quality of product in
the extrusion processes depends considerably on the flow and heat transfer characteristics of a
thin liquid film over a stretching sheet, analysis of momentum and heat transfer in such
processes is essential. Therefore, in the study of free convection and heat transfer problems, the
analysis of incompressible laminar flow of viscous fluid in a steady state, two-dimensional free
convection boundary-layer has over the years been a common area of increasing research
interests following experimental investigations of Schmidt and Beckmann [1] and the
pioneering theoretical work of Ostrach et al. [2].

In their attempt to study the laminar free convection flow and heat transfer problem in (1953),
Ostrach et al. [2] applied method of iterative integration to analyze free convection over a semi-
infinite isothermal flat plate. The author obtained the numerical solutions for a wide range of
Prandtl numbers from 0.01 to 1000 and validated their numerical results using experimental
data of Schimdt and Beckmann [1]. Five years later, Sparrow and Gregg [3] presented a further
study on numerical solutions for laminar free convection from a vertical plate with uniform
surface heat flux. Considering the fact that the major part of low Prandtl-number boundary layer
of free convection is inviscid, Lefevre [4] examined the laminar free convection of an inviscid
flow from a vertical plane surface. In a further work, Sparrow and Gregg [5] developed similar
solutions for free convection from a non-isothermal vertical plate.

Meanwhile, a study on fluid flow over a heated vertical plate at high Prandtl number was
presented by Stewartson and Jones [6]. Due to the disadvantages in the numerical methods in
the previous studies [2, 3], Kuiken [7] adopted method of matched asymptotic expansion and
established asymptotic solutions for large Prandtl number free convection. In the subsequent
year, the same author applied the singular perturbation method and analyzed free convection at
low Prandtl numbers [8]. Also, in another work on the asymptotic analysis of the same problem,
Eshghy [9] studied free-convection boundary layers at large Prandtl number while Roy [10]
investigated free convection for uniform surface heat flux at high Prandtl number. With the
development of asymptotic solution using perturbation method, a combined study of the effects
of small and high Prandtl numbers on the viscous fluid flow over a flat vertical plate was
submitted by Kuiken and Rotem [11].

However, the requirement, searching and exertness of small parameter in the equations make
the perturbation methods limited in applications. Therefore, Na and Habib [12] applied
parameter differentiation method to solve the free convection boundary layer problem. Few
years later, Merkin [13] presented the similarity solutions for free convection on a vertical plate
while Merkin and Pop [14] used finite difference method to develop numerical solutions for
conjugate free convection problem of boundary-layer flow over a vertical plate. Also, Ali et al.
[15] submitted a study on numerical investigation of free convective boundary layer in a viscous
fluid. The various analytical and numerical studies of the past works have shown that the
boundary layer problems are very difficult to solve because besides having very thin regions
where there is rapid change of the fluid properties they are defined on unbounded domains.
Although, analytical methods are used to solve boundary layer problems, they converge very
slowly for some boundary layer problems, particularly those with very large parameters.

The numerical methods used also encounter problems in resolving the solution of the governing
equations in the very thin regions and in cases where singularities or multiple solutions exist.
Additionally, intensive computer time is required to solve the problem using numerical
methods. Consequently, it is often costly and time consuming to get a complete curve of results
with these methods. Furthermore, the numerical methods are based on discrete techniques and
as a result, only the calculations of the approximate solutions for some values of time and space
variables are carried out and some important phenomena of the problem can be overlooked.
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Therefore, it is absolutely required that the stability and convergence analysis should be carried
so as to avoid divergence or inappropriate results.

In recent times, various new mathematical techniques have been developed for providing
approximate analytical solutions to nonlinear problems. These methods include Adomian
decomposition method (ADM), homotopy perturbation method (HPM), variation iteration
method (VIM), differential transformation method (DTM), variation of parameter method
(VPM), homotopy analysis method (HAM) etc. In the quest of presenting symbolic solutions
to the flow and heat transfer problem using one of the recently developed semi-analytical
methods, Motsa et al. [16] adopted homotopy analysis method to solve the free convection
boundary layer flow with heat and mass transfer. In another work, the authors applied spectral
local linearization approach for solving the natural convection boundary layer flow [17] while
Ghotbi et al. [18] developed analytical solutions to the natural convection boundary layer flow
using homotopy analysis method. Although, the homotopy analysis method (HAM) is a very
reliable and efficient semi-analytical technique, it suffers from a number of limiting
assumptions such as the requirements that the solution ought to conform to the so-called rule
of solution expression and the rule of coefficient ergodicity.

Also, the use of HAM in the analysis of linear and nonlinear equations requires the
determination of auxiliary parameter which will increase the computational cost and time.
Additionally, the lack of rigorous theories or proper guidance for choosing initial
approximation, auxiliary linear operators, auxiliary functions, and auxiliary parameters limits
the applications of HAM. Moreover, such method requires high skill in mathematical analysis
and the solution comes with large number of terms.

The relative simplicity coupled with ease of applications of differential transformation method
(DTM) has proven that the method is more effective than most of the other approximate
analytical methods. The differential transformation method as introduced by Zhou [19] has fast
gained ground as it appeared in many engineering and scientific research papers. This is
because, with the applications of DTM, a closed form series solution or approximate solution
can be provided for nonlinear integral and differential equations without linearization,
analytical integration, restrictive assumptions, perturbation, evaluation of the Lagrangian
multiplier, difficult computation for finding the Adomian polynomials and discretization or
round-off error. It reduces complexity of expansion of derivatives and the computational
difficulties of the other traditional or recently developed methods.

Therefore, Yu and Chen [20] applied the differential transformation method to provide
approximate analytical solutions to Blasius equation. Also, Kuo [21] adopted the same method
to determine the velocity and temperature profiles of the Blasius equation of forced convection
problem for fluid flow passing over a flat plate. An extended work on the applications of
differential transformation method to free convection boundary-layer problem of two-
dimensional steady and incompressible laminar flow passing over a vertical plate was presented
by the same author [22]. However, in the later work, the nonlinear coupled boundary value
equations governing the flow and heat transfer processes are reduced to initial value equations
by a group of transformation and the resulting coupled initial-value equations are solved by
means of the differential transformation method. The reduction or the transformation of the
boundary value problems to the initial value problems was carried out due to the fact that the
developed systems of nonlinear differential equations contain an unbounded domain of infinite
boundary conditions. Moreover, in order to obtain the numerical solutions that are valid over
the entire large domain of the problem, Ostrach et al. [2] has earlier estimated the values of

f"(0) and &'(0) during the analysis of the developed systems of fully coupled nonlinear

ordinary differential equations. Following the Ostrach et al’s approach, most of the subsequent
solutions provided in literature [3, 9, 10, 12, 14, 15, 21, and 22] were based on the estimated
boundary conditions given by Ostrach et al [1].
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Additionally, there are the limitations of power series solutions to small domain values of the
independent variable(s). Consequently, the DTM solutions diverge for some differential
equations that extremely have nonlinear behaviors or have boundary-conditions at infinity.
However, in some recent studies, the use of power series methods coupled with Padé-
approximant technique have shown to be very effective way of developing accurate analytical
solutions to nonlinear problems of large or unbounded domain problems of infinite boundary
conditions. Therefore, in a recent work, Rashidi et al. [23] applied differential transformation
method coupled with Padé-approximant technique to develop a novel analytical solution for
mixed convection about an inclined flat plate embedded in a porous medium. Although, the
application of Padé-approximant technique with power series method increases the rate of
convergence and the radius of convergence of power series solution, it comes with large volume
of calculations and computations. Therefore, in some recent studies on boundary-layer flows
[24-39], the nonlinear equations are solved by new semi-analytical schemes which include the
multi-step differential transform method (MDTM). The main advantage of MDTM is that it
can be applied directly to nonlinear differential equations of infinite boundary conditions
without the use of after-treatment techniques and domain transformation techniques. By
applying the MDTM, the interval of convergence for the series solution is increased. The
MDTM is treated as an algorithm in a sequence of intervals for finding accurate approximate
solutions for systems of differential equations.

The previous studies on the problem under investigation are based on the flow of viscous fluid
as shown in the above review. To the best of the author’s knowledge, a study on the influence
of nanoparticle shape, size and type on the free convection boundary-layer flow and heat
transfer of nanofluids over a vertical plate at low and high Prandtl numbers using multi-step
differential transformation method has not been carried out. Therefore, the present study
demonstrates the application of multi-step differential transformation method to develop
approximate analytical solutions for the free convection boundary-layer flow and heat transfer
of nanofluids of different nano-size particles over a vertical plate at low and high Prandtl
numbers. Another novelty of the present study is displayed in the development of approximate
analytical solutions for the free convection boundary layer problem without the use of the

estimated boundary conditions f"(0) and 6'(0) during the analysis of the problem.
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Figure 1 Velocity and temperature profiles in free convection flow over a vertical plate [20]
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2 Problem Formulation and Mathematical analysis

Consider a laminar free-convection flow of an incompressible nanofluid over a vertical plate
parallel to the direction of the generating body force as shown in Fig. (1). Assuming that the
flow in the laminar boundary layer is two-dimensional and steady, the equations for continuity
and motion are given as

ou ov
xtay " (1)
ou @ 0’
P (Ua—iwauj = Ly glﬁ 9(pB), (T-T,) (2)
oT  oT 8T
(pCp)nf [u5+\/5] =k, Fra (3)

Assuming no slip conditions, the appropriate boundary conditions are given as
u=0, v=0, T=T, at y=0 (4a)

u=0, T=T, aty—xo (4b)

Table 1 The values of different shapes of nanoparticles [28, 29]

SIN Name Shape Shape factor (m) Sphericity(y)

1 Sphere ‘ 3.0 1.000
2 Platelet - 5.7 0.526

3 Cylinder : 4.8 0.625
4 Lamina 16.2 0.185
5 Brick 3.7 0.811
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Where the various physical and thermal properties in the Eq. (1-3) are given as

Pu = pi (1=4)+pd (52)
(£, ), =(p8,), @=)+(pc,), ¢ (5b)
(PB), =(pB), (1-9)+(pB), ¢ (5¢)
s = H _ (5¢)

(1-¢)"

=k, ky+(m=1)k; —(m-1)g(k, —k,) ©
ky+(m=1)k; +g(k; —k,)

where m in the above Hamilton Crosser’s model in Eq. (6) is the shape factor which numerical values
for different shapes are given in Table (1). It should be noted that the shape factor relates with the

sphericity bym = % where A is the sphericity (the ratio of the surface area of the sphere and

the surface area of the real particles with equal volumes) [28, 29]. For sphericity of sphere,
platelet, cylinder, laminar and brick are 1.000, 0.526, 0.625, 0.185 and 0.811, respectively. The
Hamilton Crosser’s model becomes a Maxwell-Garnett’s model, when the shape factor of the
nanoparticle, m=3. Table (2) and (3) present the physical and thermal properties of the base
fluid and the nanoparticles, respectively. SWCNTs mean single-walled carbon nanotubes.
Going back to Eq. (1), (2) and (3) and if one introduces a stream function, (X, y) such that

0 0

u=Y¥ =¥ ©)
oy OX

and use the following similarity and dimensionless variables

2 % 2 3 V4
n{pf(gﬂf (TWTOO))] , [pf(gﬂf (T,~T.)x ] ),

y! -
4#?)( o 4/1? (8)
- c
o=" T‘*’,Pr:ﬂfp,
TW _Too kf

Table 2 Physical and thermal properties of the base fluid

[28-33]
Base fluid p (kg/m?3) cp (J/kgK) k (W/mK)
Pure water 997.1 4179 0.613
Ethylene Glycol 1115 2430 0.253
Engine oil 884 1910 0.144

Kerosene 783 2010 0.145
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Table 3 Physical and thermal properties of nanoparticles [28-33]

Nanoparticles p (kg/m3) cp (JI/kgK) k (W/mK)
Copper (Cu) 8933 385 401
Aluminum oxide (Al>O5) 3970 765 40
SWCNTSs 2600 425 6600
Silver (Ag) 10500 235.0 429
Titanium dioxide (TiO2) 4250 686.2 8.9538
Copper (1) Oxide (CuO) 783 540 18

one arrives at fully coupled third and second orders ordinary differential equations

<1—¢>+¢{§j}](sf () )-2(1 )Y

£ (n)+(1-9)" {
+| (1-9)+9[(08)./(0B), ||0(n)

=0 ©

0(n)+3 1 [ks +(m=1)k, —(m-1)¢(k, —k,)

[(l—¢)+¢[(p0p)s/(p0p),ﬂ k, +(m=1)k; +¢(k; —k, )

and the boundary conditions as
f=0, f'=0, =1, when n=0

] Prind'(7)=0 (10)

(11)
f'=0, =0, when =0

It should be noted that for a viscous fluid which does not have nanoparticles, the nanoparticle
volume fraction is zero i.e. ¢=0 and then one recovers the earlier models [2-15] from Eq. (9)
and (10) which are

743t -2(f) +6=0 (12)

0"+3Prf o' =0 (13)

and the boundary conditions remain the same as in Eq. (11)

3 Basic Concepts of differential transform method

The relatively new semi-analytical method, differential transformation method introduced by
Zhou [19] has proven proved very effective in providing highly accurate solutions to differential
equations, difference equation, differential-difference equations, fractional differential
equation, pantograph equation and integro-differential equation. Therefore, this method is
applied to the present study. The basic definitions and the operational properties of the method
are as follows:

If u(t) isanalytic in the domain T, then the function u(t) will be differentiated continuously
with respect to time t.

d’u(t)

e =gp(,p) forall teT (14)
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for t=t;, then o(t, p) = o(t;, p) , where p belongs to the set of non-negative integers, denoted
as the p-domain. We can therefore write Eq. (14) as

waﬂhm{%%q

Where U is called the spectrum of u(t) at t=t;. Expressing u(t) in Taylor’s series as

(15)

u(t) = z[ ]u<) (16)

Where Equ. (14) is the inverse of U (k) us symbol ‘D’ denoting the differential transformation process
and combining (15) and (16), we have

u(t) = Z{ }U(p) DU (p) (17)

4 Basic Concepts of Multi-Step differential transform method

The limitation of classical DTM is shown when is being used for solving differential equations
with the boundary conditions at infinity i.e. the obtained series solution through the DTM for
such equation with the boundary condition become divergent. Besides that, generally, power
series solutions are not useful for large values of the independent variable. In order to overcome
this shortcoming, the multi-step DTM is developed. The basic concepts of the multi-step DTM
for solving non-linear initial-value problem is presented as follows,

u(t, f, f',...f<“>)=o, (18)
subject to the initial conditions
f®(0)=c,, k=01..h-1. (19)

Let [O, T] be the interval over which we want to find the solution of the initial value problem

of Eq. (18). In actual application of the DTM, the approximate solution of the initial value
problem of Eq. (18) can be expressed by the following finite series:

=iamtm tel0, T] (20)

The multi-step approach introduces a new idea for constructing the approximate solution.
Assume that the interval [0, T]is divided into N subintervals [t_,,t], i=12,...,N of equal
step size H =T /Nby using the nodest =iH . The main idea of the multi-step DTM is as
follows. First, we apply the DTM to Eq. (18) over the interval [0,t,],we will obtain the
following approximate solution,

f()=Ya.t" te[o], (21)
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Table 4 Operational properties of differential transformation method

S/N

1

2

3

Function
u(t) £v(t)
au(t)
du(t)
dt

u(t)v(t)

u"(t)

d"u(t)
dx"

sin(wt+a)

cos(wt+er)

Differential transform
U(p)£V(p)

aU(p)

(p+DU(p+1)
>SVOU(p-)
STV (p-n

(P+1)(p+2)--(p+n)U(p+n)

—SIn| —+ao
p! 2!

0k zp
Z(p)=ﬁcos(7+aj

Using the initial conditions f"(0)=c,. Fori>2and at each subinterval [t ,t ]we will use

the initial conditions f,*'(t_,)= f.%)(t_,)and apply the DTM to Eq. (18) over the interval

[ti_l,ti],where t, in Eq. (15) is replaced byt ;. The process is repeated and generates a

sequence of approximate solution f; (t), i=1, 2,..., N, for the solution f (t),

fi(t)= iaim (t=ty)", teft, t], (22)

m=0

Where M =K -N.. In fact, the multi-step DTM assumes the following solution:

f (), te[0,t]

fi(t), telt t.] (23)

.fN (t), te[ty, ty]

which shows that there is a separate function for every sub domain. Following the above
definition, is could be stated that the multi-step DTM for every sub-domain is defined as
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The inverse multi-step DTM is

Hm dm
()< 1 S0

fi(®) = :E:{ } F.(m)

Vol. 20, No. 1, March 2019

(24)

(25)

The new algorithm, multi-step DTM is simple for computational performance for all values of
H. It is easily observed that if the step sizeH =T , then the multi-step DTM reduces to the
classical DTM. Using the operational properties of the differential transformation method, the
differential transformation of the governing differential Eq. (9) is given as

(p+1)(p+2)(p+3)F(

+(1-9)

p+3)

3% (p-1+1)(p—1+2)F(1)F(p-1+2)
]

2 (1+1)(p-1+1)F (1+1)F (p—1+1)

+ (1-9)+4[(08),/(08), |0 ()

Equivalently, we can write the recussive relation for Eq. (26) in DTM domain as

) _ (1_¢)2.5

Fp+3 (p+1)(p+2)(p+3)

25" (141)(p-1+1)F (141)F (p—|
word )

32 p-1+1)(p-1+2)F(1)F(p-1+2)

1=0

-[@-9)+9[(08),/(p8), ] |(p)

+1)

For the Eq.(10), we have the recursive relation in differential transform domain as

(p+1)(p+2)O(p+2)+

1

3Pr

xzp:l+1 (1+1)F(p-1I)

which can be written as

(1-9)+9](sC,), /(#C,), ]

ky+(m-1)k, —(m-1)g(k, —k,)
Ky +(m—1)k, +¢(k, —k,)

|

(p+1)(p+2)

1 {ks+(m—1)kf—(m—l)¢(kf—ks)
o(pr2)-—Fr | Ta-g)+o[(ec,) (e, ]

<3 (1+1)0 (1+1)F (p-1)

k, +(m-1)k, +¢(k

Also, recursive relation for the boundary conditions in Eq.(12) are

f_ks)

|

(26)

(27)

(28)

(29)
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F(p)=0=F(0)=0, (p+1)F(p+1)=0 =F@=0, &(p)=1 =6(0)=1,
F(Z):%, 0(1)=b,

Where a and b are unknown constants which will be found later. It should be noted that the
transformations which included “a” and “b” are established from values of

f"(0)=aand 6'(0)=b. From Eg. (28), we have the following boundary conditions in
differential transform domain

F(0)=0, F@)=0, 6(0)=1 F(2)=%, 0(1)=h (31)

(30)

Using p=0, 1, 2, 3, 4, 5, 6, 7... in the above recursive relations in Eq. (28), we arrived at

Fa=— 1) (om), 00, ]

%{(1_¢)+¢[(pﬂ)s/(0ﬂ)f]}b

R

F[4]=

F[6]=0
Ha-oy*la-9)+ o[ (08). /(08), Tlab
et et
(5 fa-or o om).jom), ]
_7(1_¢)2A5 . .
e {(1‘@”[%} 7 (1-9) ¢[(pﬁ)s/(pﬁ)f}} b
F -2 0o (o) f(08), ]

(1-0)+o(08), (o), ]} Pr |[0-0)+ 9] (5,),/(45.), ]|

8 ky+(m-1)k, —(m-1)(k, —k,)
[ k,+(m-1)k, +¢(k, —k,) ]

+ ab
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(1_¢)2A5 {(1_¢)+¢{&J}a3
2{(1_¢)+¢(§]} 12 | Py
A famgyeof (o8, 08, | o

11(1-¢)*° | s
R R
(-9) _3{(1_¢)+¢(P_:]} 1-¢) 2
336 ! _8¢) {(@-9)+9[(08)./(08), ]| b

1
) {(1_¢)+¢[(pﬂ)s/(pﬂ)f}}2 Pr(1-¢)° [(1—¢)+¢[(pcp)s/(pcp)fﬂ
40 {ks—i-(m—l)kf —(m-1)p(k, —ks)]

k,+(m-1)k, +¢(k, —k,)

3]

F[8] =

(1_¢)5 P. 2
G g(8), f(8), {(1—¢>+¢ s }
2{(1—¢)+¢[&} (24 { [ J {p]

A2 a-0)+o[ (o) f (o), ]

_{13(;6—5)5}{(1_¢)+¢[<pms/<pﬂ>f]}{@‘f’ﬁ)*"’[?}}az

F[g]:(lgfgz‘s _3{(1—¢)+¢(f} 1- gy 2 |
| +[( o J{(l—mw[(pﬂ)s/(pﬂ)f]} "

1 .
{{(1¢)+¢[(pﬁ)s/(pﬁ)f}}2 N [(a-0)+9[(ec,). /(e5,),]]

240 k, +(m-1)k, —(m-1)¢(k, —k,)
ky +(m-1)k, +¢(kf —ks)

(1-g)"0"
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]{(1—¢)+¢[(pﬂ)s/(pmf}}b

{(1_¢)+¢[(pﬁ)s/(/’ﬂ)' ]}2

~—

a(l-¢)
15

o)

]{(1 8)+8{(o0)./(o8), Jjb

]{(1 8)+9[(o8),/(08), ]}

1

pr | [-0)+o[ (ee,).f(4,), ]|
{ks +(m=1)k, —(m-1)g(k, —)ks)}

k+(m=1)k, +g(k, —k
o
. |jab
PB), ’

p:]}azb
[aorolloe) flee) ]|
{ks +(m=1)k, —(m-1)g (K, —)ks)}

ko +(m=1)k, +g(k, kK

pB)./(e8), |

J

ab

+[{(M:ﬁ)wﬁ[(

+9[(08)./(08),

72

[(wf {1-9)

11a(1-¢)*
105

ootz

[Ha-or+o[on). (o0, ]1P

8

|

(1-¢)
90

]{(1 #)+8[ (o). /(0B), J}a’d
l .
[a-o)ol(oe) (oes) ]| |
{ks +(m=1)k, —(m-1)g(k, —ks)}
)

1 .
{(-0)+0[(08),J(08), ]} Pr || @=0)+0] (ee,), (o5), ]| ‘[ ]
k,+(m-1)k, +g(k, -k

+[ 14 {kﬁ(m—l)k, ~(m-1)¢(k, —ks)}
Loz

K +(m-1)k, +g(k, —k,)
120
In the same manner, the expressions for F[11], F[12], F[13], F[14], F[15] are found but they
are too large to be included in this paper. Also, using p=0, I, 2, 3... in the above recursive
relations in Eq. (29), we arrived at following solutions

a’Pr
4

0[2]=0
©[3]=0
Pr 1 ky+(m-1)k, —(m-1)g(k, —k,)
e[4]=-— ab
[(1—¢>+¢[<pcp>s/(pc,,>fﬂ{ o+ (m-0)k, +g(k, K]
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1 [ks +(m-1)k, —(m-1)¢(k, ks)]
@[5]:% [(1—¢)+¢[(pcp)s/(pcp)fﬂ k,+(m-1)k, +¢(k, —k,)
(1-9)°| (1-9)+ [ (08)./(0B), ] b

1 [ks +(m-1)k, -(m-1)(k, —ks)}
otel= o [[1-9)+ o[ (ec,) (o6,), |1t +(m=Dks o (ki k)
(1-9)°| (1-9)+#[(08),/(08), ]|V

1 {ks +(m-1)k, —(m-1)¢(k, —ks)]
[(l—¢)+¢[(pcp)s/(p0p)f ﬂ k+(m-1)k; +¢(kf _kS)
®[7]=—% Pr 1 [ks+(m—1)kf ~(m-1)¢(k, —ks)} b
g g](ee,) f(pey), |L e (mmDk gk -k,
{5 J 0 [a-0)+0[(0)./(0), ]

2 1 {ksﬁ—(ml)kf ~(m-1)g(k, ks)} 2
o811y || o[ (ve,), (oe,), JL K+ (m-Dks +olks k)

(1-9)° [ (1-0)+ [ (05, /(p), ] ab
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1 k, +(m-1)k, —(m-1)¢(k, ks)}}

[[(1¢)+¢[(pcp)s/(pcp)fﬂ[ k, +(m-1)k, +¢(kf _ks)

Pr 1 k,+(m-1)k, —(m-1)g(k, —k,)
30 [(1—¢)+¢[(Pcp)s/(PCp)fﬂ k,+(m=1)k, +¢(k, —k,)

(1-9)° [ (1-9)+ 9] (0B), /(pB), | |ab*

Pr
48

1 ky+(m=1)k, —(m-1)g(k, —k,)
(@-0)+e](pe,), /(pe,), ]| (M= ro(ki —k)

oPl="" -9y a-0)+o[(om)./(08), ] b

2[(1-9)+4[(

+(1;1¢3 _3[(1—¢)+¢[(p)s/( )ﬂ{

|

(197’ [(1-9)+ 9] (o8), /(oB), ﬂz

{ (%)1 #)"a[(1-9)+ [ (0B)./(08), |0 J
(3

[a- ¢)+¢[(pﬂ) f(eB), ]T
(—(m-1)g(k, —k,)

{@-0)+4[(08)./(08), ] |ab

~¢)
1 .{kﬁ(m 1k
L aereelloea), (oeo), ] Lt (m -k

f +¢(kf *ks)

|
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1

-0+ e[(ee,), /(ec,), ]
'{k5+(m—l K, — m—1)¢(kf—ks)}

ko +(m=1)k, +4(k, —k,)

_aPr 1

| e [u 044 (ee,), /(oe,), ||

— _ta%
41 ke+(m=1)k, —(m-1)g(k, —k,)
k,+(m-1)k, +g(k, —k,) |
1 2
% (1- ¢) 1 #)+9[(0)./(P) ﬂab

Pr 1 ¢ +¢|: p)v:H [(1,¢)+¢[(pﬂ /(pﬂ)fﬂzbz

x [ fle) ]

Pr [1 ¢)+¢[( ),/ n)'ﬂ ‘(1_(151)2061 Pr[(l el o] { (m- 1)k ¢(kf_k)}

4 {k c+(m-1)k, —(m- )¢(kf—k)} K, +(m-— 1k I CE)
k,+(m=1)k, +4(k, —k,)

o[10] = -

[-9)+o[(» )/( p), ]

2[5 ) a-e [0 o[ (o0, fom), ]
L@l oy [(@-0)+4[(o8). /(o) ]] b }
[(a-0)+[(08)./(08), ]]

Lol ([ ) o[-0y o[(09), 00, ]

{ (5 Ja-or [a-e)+6[(0m), o0, ][ }

1
[a-6)+4](ec,), (45,), ||
_pr _{ks +(m-1)k, —(m-1)(k, ks)}

40 ko +(m=1)k; +g(k, —k,)

o

{a-9)+[(08),/(08), ]] -9

In the same manner, the expressions for ©[11],©[12], ©[13], ©[14], ©[15]... are found but

they are too large to be included in this paper. From the definition in Eq. (17), the solutions of
Egs. (10) and (11) are given as

f (77) = F[0]+ 7 F[1]+7n°F[2] +7°F[3] + +1*F[4] + n°F[5]

+17°F[6]+ 71 F[7]+7°F[8]+n°F[9]++7° F[10]+... .

6 (7n7) = ©[0]+ nO[1] + °O[2] + °O[3] + +7r*O[4] + 1°O[ 5]
+1°0O[6]+ 7' O[7] + °0O[8] + °O[9] + +7"°O[10] +...

Now, consider similar fully coupled third and second orders ordinary differential equations
presented in Egs. (9) and (10), but at this time, we take a =1 and b=1

(33)
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Ps

g 2 VN ol
g 0 2 fros-2(ran )

+ (@-0)+9[(09),/(o8), ]|# (1)

=0 (34)

"(n )+ 1 ks+(m—1)kf—(m—l)qﬁ(kf—ks)}r .
o {{(1¢)+¢[(”Cp)s/(/0cp)fﬂ k+(m-1)k; +(k; -k, }Pg(”)‘g(’?) 0 (35)

With initial conditions as
g=0, ¢g'=0, ¢"=1 9=1 =1 when =0 (36)

Following the similar solution procedures of Egs. (9) and (10), the solutions of Egs. (34) and
(35) are

g (77) = G[0] + nG[1] + 7°G[2] + 7°G[3] + +1*G[4] + nGF[5]
+1°G[6]+ ' G[7]+ n*G[8] + n°G[9] + +7"°G[10] +...

9(n) = ©[0]+ n®[1] + *®[2] + °D[3] + +1* P[4] + 7,°P[5]
+1°®[6]+ 77’ D[7] + 1 D[8] + °P[9] + +,'°D[10] +...

Where

G(0)=0, GM)=0, ,G(2)==, 6(0)=1 6(1)=1

N |-

G[3] = %{(1_@ +¢[(pﬁ )./(pB), }}

G[4] =%{(1—¢)+¢[(pﬂ)s/(pﬂ)f |

S

G[6]=0
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{< ) M} {3Jo-rf-relionjion ]
2{(1-¢)+g| £= ,
o +Gj(1—¢) {(1-0)+4[(08)./(05), ]
ol 5 e redlion om), )
(1 ¢)2.5 _3{(1_¢)+¢{p_5]} (1_¢)5 )
ol -2 = ) o[ (e0).f(00), )
1
+{(1—¢)+¢[(pﬂ)s/(p/a’)f]}Pr @-9)+4[(nc,),/(ec,), ]|
8 k,+(m-1)k, —(m-1)¢(k, —k,)
[ ky+(m=1)k; +¢(k; —k,) ]
Pt
-y o) )f
( )
(1-¢)+¢
ag= - 0| {(1 ¢)+¢[ j} 1 { [ ]}
336 N 8¢) {(1 6)+4[(pB),/(0B), ]}
1 .
(la-or+o[(om),/(om), ]} Pri-e)* ||| @-0)+0[(ex,), /(oe,), ]
40 k,+(m-1)k, —(m-1)g(k, —k,)
{ k,+(m-1)k, +4(k, —k,) ]
(1-¢) :
0
e \1-9)+4[(o8)./(o8), ]
—13(1_¢)5 1-9)+¢| (p o) 1-¢)+g| 2=
F[9]:(1;f0)25 —3{(1-¢)+¢{ZS]} { 30 J{( orelonf ﬂ)’]}{( ? ¢[pr}
A oo slionsom ]
. {(1—¢)+¢[(pﬁ)s/(pﬁ)fJ}2 or [(1 ¢)+¢[(pcn)s/(pcp)fﬂ. (1-g)°
240 {ks+(m—1)kf—(m—1)¢(kf—ks)}
ko +(m-1)k, +4(k, —k,)
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[a(-9)" .
2 {(w)w[&}} [ . j{(l #)+4[(08),)(o8), ]}
e e RN |
) {7?’(124“’)25]{(1 )+9[(p8).)(08), |}
{ }[(1—1?25] -3{(1-¢)+¢[/7:} +[(1 ¢)5]{(1 0 +4[(o8),/(09) ]}z
2 (17¢)+¢[%] 6 R
f 1
+[{(1¢)+¢[(Pﬁ)s/(pﬁ)f]} Pr} |@-9)+9](ec,), /(1,), ]
8 K+ (m-1)k, —(m-1)¢(k, —k,)
{ k, +(m-1)k, +¢(k, —k,) }
_[( la-9) +¢ J{
l
) 1 § +¢ (5 ) /o8),]
G[10] = C 7;2 +G l ) +¢ ./(PB), ]}
{ }27—4145 1¢+¢pﬁ/(pﬁ)]}
{ }[11(1¢) ] [( ]
105 +¢
E (1—¢)+¢(§] 6
1
{-0)+o[( e [-0)+9(re,),(oc,), ]|
k,+(m-1)k, —(m-1)g(k, -k,)
{ K, +(m-1)k, +¢(k, —k,) }
_[(195)5]{(1 ¢)+¢[(
1
1 [(1 #)+4(pc,
+[{(1-¢)+¢[(p/5’)s/(pﬂ) e J [(1 9)+4[ (o {k +(m-1)k, -
1 K, +(m-1)k, k+m1k+¢k k
{ k+(m1k+¢k k 1¢) 1¢+¢
D[2]=0
®[3]=0
k.+(m-1)k, —(m-1)¢(k, —k
D[4] = _Pr 1 ,+(m=1)k, —(m-1)g(k, s)

8 |[(1¢)+¢[(PC

p>s/<pcp>fﬂ{

ky +(m=1)k, +¢(k, —k,)

1 [ks+(m 1)k, —(m-1)¢(k —ks)]
asl="0H [@-a)+a] (ec,) (ee,), J|L e (m=Dk (ki k)
(1-9)°[(2-9)+ [ (49), /(0P), ]|

|
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1 [ks+(m 1)k, —(m 1)¢<kf—ks)}
ate1= 201 =gy o[ (oe,), f(oe,), J]L (DK +o(k k)
(1-9)°[-9)+ [ (08),/(08), ]

1 |:ks+(m 1)k, —(m- )¢(kf—ks)}
|@=0)+[(vc), (o), |l Hor M-k rolki k)

{ +(m-1)k, —(m-1)g(k, k)]
4 |:(1*¢)+¢|:(pcp)s/(pcp)f:|i| ik +(m-1)k, +g(k, -k,

2 1 {ks+(m—1)kf—(m—1)¢(kf—ks)}
afe)=—o [a-0)+9[(p2,),f(oc,), JIL KDk + 60 —k)
B

(1-0)"° (1-9)+ 0] (08)./(08), ]

1 {ks+(m 1k, —(m-1)¢(k, —ks)}
[(1*¢)+¢[(Pcp)s/(pcp)fﬂ K, +(m=1)k, +(k, —k,)

Pr 1 ko +(m-1)k, —(m-1)¢(k, —k,)
30 [(1f¢)+¢[(pcp)s/(pcp), ﬂ K, +(m=1)k, +g(k, —k,)

(1-9)"°[@-9)+9[(08)./(08), ]]

1 k$+(m—1)k,7(m71)¢(kf,ks)
_% [(l—¢)+¢|:(/7cp)s/(pcp)'ﬂ k, +(m-1)k, +(k, -k,

ol [ a-er[a-o)+o[(on). /o), ||
4
1
[g]l o) *[(1-9)+ e0),]]
[(1 #)+ o { 1
L

2
25 l ¢ +¢ pﬂ)f
]| la-ool { E ] }

p]=— -

1¢+¢ pﬂ (o8)

-9y
1 {kﬁ(m—l)kf ~(m-1)4(k, —ks)}
Zr [(1 ¢)+¢[( )/(pcp)1ﬂ K, +(m=1)k; +¢(k, —k, )

{(@-9)+9[(08)./(08), ]
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1

[@-0)+4[(pe,),f(c,), ||
k+(m 1)k, (ml( )}

ky+(m- 1k+¢k k

Pr

‘ rw ool ]

k, + #(k, k)
k+(ml +¢k -k,)

s
g )a-er [0+ (o) /0, ]]
[

0
or | (1= ¢)+¢ pc,) ﬂ ,
3oy Pr (m-Dk —(m 1)¢k ) [a-9)+0[(e0)./(p9), ]
{ k,+(m-1)k, +¢(k, —k,) }
1
1
1-¢)° Pr [(1*¢)+¢[(/’°u)s/(/’°p)¢ ﬂ
O [@-0)+4[(se,). /(2,), ] B Py o), (o8, ] (ko (k)
4 ‘{kd(m—l)kf—(m—1)¢(kf—ks)} { K +(m-1)k, +¢(k, -k, }
k,+(m-1)k, +g(k, —k,) [(1 [(pﬂ ﬂ
1
2 (5

$)+
Ja-y*[@-0)+o[(9).(08), ]

L %](1 ¢)5[(1¢)+¢[(pﬁ)s/(pﬁ)fﬂz}

[a-0)+9[(e0)./(p), ]

(-0 (@) o[(08)./(09), ]

.L & Ja-ey @)+ o[(om),fom), ] }

1

- ¢)+¢[< ) /<pc )]
PO T+ ok —k,)
® y }

k+ml +¢k -k

[a-0)+6[(o8)./(o8), ]| (1-0)*

The functions in Eqg. (32) and (33) and that in Eq. (37) and (38) have relations as follows:
f(n):akg(aqn) - f'(n)=a""g'(a ( )—> f'(c0)=a*"g’ (o)

and
0(n)=b"9(bn) — 6(0)=b"%(e)
From Eq. (11), f'(e0)=0and §()=0 . Since a#0andb+0—g'(x)=0and $()=0.

5 Applying Multi-Step DTM

To solve the boundary layer problems, the domain [0, ) is replaced by [0, ). But n_should
be great enough that the solution is not dependent on. The solution domain should be divided
to N equal parts (H=n/N). So, we have
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P

—H)+g| 2= (nYa (n ) =2( 5 (n )Y
0/(m)+(1-9)" {(1 g ¢[ H(e’g'(m)g'(”') Z(f'("')))

[ @-0)+4[ (o). /(0o8), ]]9(n)

=0 (39)

(i-)H <m <iH, for i<i<N

$ln)+3 1 [ks+(m—1)kf—(m—l)¢(kf—ks)] Pre (1)41(1) =0 (40)
T [aeredlo) floes) I Her b el
Applying multi-step DTM on Eg. (39) and Eq. (40)
e (1+1) (p-1+1)
2y G (1+1) G (p-1+1)
(1-9)"H° {(1—¢)+¢[%H o " (p_|+1)(pH_|+2)
Gi(p+3)=(p+1)(p+2)(p+3) f _3§Gi(|) o G (p-1+2) (41)
-[@-9)+0[(08)./(p8), ]]5(P)
for i<i<N
{ 1 {ks +(m-1)k, —(m-1)¢(k, —ks)]
(pa2)= _3H2Pr (1-¢)+¢| (oC, c,), k,+(m-1)k, +4(k, —k,)
AP 2= (o 2) [ L1 oo >ﬂ (42)
xg( “U,1+1)6,(p-1)

for i<i<N

The initial conditions for the problem are considered for the first sub domain (i =1). Followng
Eq. (23), the differential transform for the initial conditions for Eq. (34) and (35) and for Egs.
(41) and (42) are

! H 2 4 H 2
G1(0):g1(0)20’ Gl(l):Hgl(O):O’ G1(2)=7g1=7, (43)
¥,(0)=4(0)=1 ¥,(1)=H#(0)=H
The boundary conditions of each subdomain are continuity of the
gi (77i)’ gi'(ni)’ 9”(77i)’ l9(77i)’ and ‘gl(ni) (44)

These boundary conditions can be obtained from Eq. (25):

gi(ni)’ gi'(ni)’ g”(ﬂi)’ ‘9(77i)’ and ‘9'(77i) (44)
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k=0 i (453)
Oin (77i+1) =G, (0) -G,y (0) = kZ:(;G, (k)
, - K
0 (77|+1) = kz—];ﬁGl (k)
- ) (45b)
6iln.) =22 56, 0)=3ka ()
aina) =3 e (1)
- . (45c¢)
ains) =222 6,,(2)=2 S(k-2)8, (4
8 (m2)= D%, (K)
k=0 i (46a)
da (77|+1) =¥, (0) - Y, (O) = kz_(;‘l’l (k)
A(ma) =2 . (6)
- ) (46Db)
=28 5w, @ =Sk 9

The values of the g'(7,,) and 9(7,,)can be calculated by differentiating from Eq. (24)
! ’ ] mn k
gi (OO) =0 (7700) =0 (77N+1) = ZHGN (k)
k=1

8 ()= 8 (1,) =8 () =3 (K)

Now, Eg. (9) and (10) are solved with a similar process like Eqgs. (34) and (35) using multi-step
DTM. The only difference is that the condition f ”(O) = ais replaced by the condition g”(O) =1
It should be noted as mentioned previously that the unknown parameters “a” and “b” in the
solutions are unknown constants. The infinite boundary conditionsi.e. 7 >0, f'=0, €=0

are applied. The resulting simultaneous equations are solved to obtain the values of a and b for
the respective values of the physical and thermal properties of the nanofluids under
considerations.

(47)

6 Flow and heat transfer parameters

In addition to the determination of the velocity and temperature distributions, it is often
desirable to compute other physically important quantities (such as shear stress, drag, heat
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transfer rate and heat transfer coefficient) associated with the free convection flow and heat
transfer problem. Consequently, two parameters, a flow parameter and a heat transfer
parameter, are computed. The local heat transfer coefficient at the surface of the vertical plate
can be obtained from

6.1 Fluid flow parameter

Skin friction coefficient

au [éu 617}
n ~ nf A AL
c. = TW — f ay y=0 — 677 ay y=0 (48)
f pnfl"I2 pnfu2 pnfuZ
After the dimensionless exercise,
f"(0
Cs (Rex )]/2 = ( 2).5
1—¢)
y (49)
]/2 TW 14 f (O
N e — ) BAC ]
(46r7)" (vmr) (1-4)
6.2 Heat transfer parameter
k 1/4
h =~ 5 ﬂ =K 9'(0)1(16rxj (50)
T,—-T, \ oy v x\ 4
6.3 The local Nusselt number
The local Nusselt number is
1/4
Nu, =X o[ X |foT =—9’(o)(lerxj
knf TW _Too ay -0 4
’ (51)

Nu, =— 7 Gr* = f((Pr)Gr)

6'(0
Where ¢(Pr)=- ( ) is a function of Prandtl number. The dependence of ¢ on the Prandtl

2
number is evidenced by Eq. (51). It could also be shown that

Nu, Ky 0,(0)_[ks +(m-1)k, —(m-1)¢(k, ks)}e,(o)

(Re,)” K, k,+(m=1)k, +g(k, —k,)

(52)

Where Re, and Gr, are the local Reynold and Grashof numbers defined as:

T -T )x®
Rexzﬁ and er=g’8( < )
vV \4

nf
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7 Results and Discussion

Tables (5-22) present various comparisons of results of the present study and the past works for
viscous fluid i.e. when the volume fraction of the nanoparticle is zero (¢=0). It could be seen
from the Tables that there are excellent agreements between the past results and the present
study. Moreover, the Tables present the effects of Prandtl number on the flow and heat transfer
processes.

Table 5 Comparison of results for the skin friction parameter

f'(0)

Pr Sparrow Kuiken[8] Presentstudy Residueon[5] Residue on [8]

& Gregg [5]
0.003 1.0223 1.0151 1. 0224 0.0001 0.0073
0.008 0.9955 0.9801 0.9955 0.0000 0.0154
0.020 0.9590 0.9284 0.9591 0.0001 0.0307
0.030 0.9384 0.8966 0.9384 0.0000 0.0418

Table 6 Comparison of results of f (OO)

f ()

Pr Sparrow Kuiken[8] Presentstudy Residueon[5] Residue on [8]

& Gregg [5]
0.003 8.7060 8.8763 8.7061 0.0001 0.1702
0.008 5.4018 5.4152 5.4018 0.0000 0.0134
0.020 3.4093 3.4055 3.4093 0.0000 0.0038
0.030 2.7878 2.7710 2.7878 0.0000 0.0168

Table 7 Comparison of results of —(9'(0)

1
Nu, /(G,Pr*)* =-6'(0)
Pr Sparrow Kuiken[8] Presentstudy Residueon[5] Residue on [8]

& Gregg [5]
0.003 8.7060 8.8763 8.7061 0.0001 0.1702
0.003 0.5827 0.5827 0. 5827 0.0000 0.0000
0.008 0.5729 0.5714 0.5728 0.0001 0.0014
0.020 0.5582 0.5546 0.5582 0.0000 0.0036
0.030 0.5497 0.5443 0.5497 0.0000 0.0054

Table 8 Comparison of results of f (77) , f'(?]) and f"(?]) at Pr=0.01

f (1) t'(n) t"(n)

n Ostrach[2] Presentstudy Ostrach[2] Presentstudy Ostrach[2] Present study

0.0 0.0000 0.0000 0.0000 0.0000 0.9862 0.9845
1.0 0.3376 0.3376 0.5379 0.5379 0.1734 0.1734
2.0 0.9023 0.9023 0.5535 0.5535 0.0641 0.0641
3.0 1.4200 1.4200 0.4810 0.4810 0.0719 0.0719
40 1.8665 1.8665 0.4136 0.4136 0.0629 0.0629
5.0 22501 2.2501 0.3548 0.3548 0.0549 0.0549
6.0 2.5787 2.5787 0.3035 0.3035 0.0479 0.0479
7.0 2.8593 2.8593 0.2586 0.2586 0.0419 0.0419
9.0 3.2999 3.2999 0.1853 0.1853 0.0319 0.0319
11 3.6123 3.6123 0.1297 0.1297 0.0241 0.0241
13 3.8276 3.8276 0.0877 0.0877 0.0181 0.0181
16 4.0204 4.0204 0.0441 0.0441 0.0114 0.0114

20 4.1226 4.1226 0.0108 0.0108 0.0057 0.0057



Iranian Journal of Mechanical Engineering Vol. 20, No. 1, March 2019

22 4.1343 4.1343 0.0015 0.0015 0.0037 0.0037

Table 9 Comparison of results of f (77) f'(?]) and f"(n) at Pr=1

f(n) t'(n) t"(n)

n Ostrach [2] Presentstudy Ostrach[2] Presentstudy Ostrach[2] Present study

0.0 0.0000 0.0000 0.0000 0.0000 0.6421 0.6421

1.0 0.1809 0.1809 0.2502 0.2502 -0.0263 -0.0263
2.0 0.3859 0.3859 0.1450 0.1450 -0.1233 -0.1233
3.0 04791 0.4791 0.0524 0.0524 -0.0602 -0.0602
4.0 0.5096 0.5096 0.0151 0.0151 -0.0202 -0.0202
50 05177 0.5177 0.0035 0.0035 -0.0057 -0.0057
6.0 0.5194 0.5194 0.0004 0.0004 -0.0014 -0.0014

Table 10 Comparison of results of f (77) , f'(i]) and f"(?]) at Pr=2

f(n) t'(n) t"(n)

n Ostrach[2] Presentstudy Ostrach[2] Presentstudy Ostrach[2] Present study

0.0 0.0000 0.0000 0.0000 0.0000 0.5713 0.5712
1.0  0.1508 0.1508 0.1994 0.1994 -0.0440 -0.0440
2.0 0.3066 0.3066 0.1050 0.1050 -0.0960 -0.0960
3.0 0.3731 0.3731 0.0373 0.0373 -0.0416 -0.0416
40 0.3953 0.3953 0.0018 0.0018 -0.0138 -0.0138
50 0.4023 0.4023 0.0037 0.0037 -0.0042 -0.0042
7.0 0.4053 0.4053 0.0005 0.0005 -0.0004 -0.0004
8.0 0.4056 0.4056 0.0002 0.0002 -0.0001 -0.0001
9.0 0.4058 0.4058 0.0001 0.0001 0.0000 0.0000
10.0 0.4059 0.4059 0.0001 0.0001 0.0000 0.0000
11.0 0.4059 0.4059 0.0001 0.0001 0.0000 0.0000

Table 11 Comparison of results of f (77) , f'(i]) and f"(?]) at Pr=10

f (1) f'(n) t"(n)

n  Ostrach[2] Presentstudy Ostrach[2] Presentstudy Ostrach[2] Present study
0.0  0.0000 0.0000 0.0000 0.0000 0.4192 0.4191
1.0 0.0908 0.0908 0.1066 0.1066 -0.0462 -0.0462
20 01714 0.1714 0.0567 0.0567 -0.0400 -0.0400
3.0 0.2119 0.2119 0.0276 0.0276 -0.0201 -0.0201
40 02314 0.2314 0.0132 0.0132 -0.0098 -0.0098
50 0.2408 0.2408 0.0063 0.0063 -0.0047 -0.0047
7.0 0.2474 0.2474 0.0014 0.0014 -0.0011 -0.0011
8.0 0.2484 0.2484 0.0007 0.0007 -0.0005 -0.0005

9.0 0.2489 0.2489 0.0003 0.0003 -0.0002 -0.0002
10.0 0.2491 0.2491 0.0002 0.0002 -0.0001 -0.0001

Table 12 Comparison of results of (77) f'(?]) and f"(l]) at Pr=100

f(n) f'(n) t"(n)

n Ostrach[2] Presentstudy Ostrach[2] Presentstudy Ostrach[2] Present study

0.0 0.0000 0.0000 0.0000 0.0000 0.2517 0.2517

1.0 0.0371 0.0371 0.0385 0.0385 -0.0140 -0.0140
20 0.0692 0.0692 0.0265 0.0265 -0.0101 -0.0101
3.0 0.0912 0.0912 0.0180 0.0180 -0.0071 -0.0071
4.0 0.1061 0.1061 0.0121 0.0121 -0.0049 -0.0049
6.0 0.1226 0.1226 0.0053 0.0053 -0.0022 -0.0022
8.0 0.1297 0.1297 0.0022 0.0022 -0.0010 -0.0010
9.0 0.1315 0.1315 0.0014 0.0014 -0.0007 -0.0007
10.0 0.1326 0.1326 0.0008 0.0008 -0.0005 -0.0005

11.0 0.1332 0.1332 0.0004 0.0004 -0.0003 -0.0003
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12.0 0.1335 0.1335 0.0002 0.0002 -0.0002 -0.0002
13.0 0.1336 0.1335 0.0000 0.0000 -00001 -0.0001

Table 13 Comparison of results of , and at Pr=1000

f(n) t'(n) t"(n)

1 Ostrach[2] Presentstudy Ostrach[2] Presentstudy Ostrach[2] Present study

0.0 0.0000 0.0000 0.0000 0.0000 0.1450 0.1450
1.0 0.0135 0.0135 0.0136 0.0136 -0.0027 -0.0027
3.0 0.0358 0.0358 0.0090 0.0090 -0.0019 -0.0019
50 0.0912 0.0912 0.0180 0.0180 -0.0071 -0.0071
7.0 0.0603 0.0603 0.0039 0.0039 -0.0008 -0.0008
8.0 0.0638 0.0638 0.0032 0.0032 -0.0007 -0.0007
10.0 0.0691 0.0691 0.0022 0.0022 -0.0004 -0.0004
12.0 0.0727 0.0727 0.0015 0.0015 -0.0003 -0.0003
14.0 0.0752 0.0752 0.0011 0.0011 -0.0002 -0.0002
16.0 0.0771 0.0771 0.0008 0.0008 -0.0001 -0.0001
18.0 0.0786 0.0786 0.0007 0.0007 0.0000 0.0000
20.0 0.0798 0.0798 0.0006 0.0006 00000 0.0000
22.0 0.0809 0.0809 0.0005 0.0005 0.0000 0.0000

Table 14 Comparison of results of@(?]) ,and 0’(77) at Pr=0.01

0(n) o'(n)
n Ostrach|[2] Present Ostrach[2] Present
0.0 1.0000 1.0000 -0.0812 -0.0812
1.0 0.9189 0.9189 -0.0809 -0.0809
2.0 0.8387 0.8387 -0.0794 -0.0794
3.0 0.7606 0.7606 -0.0766 -0.0766
40 0.6857 0.6857 -0.0720 -0.0720
50 0.6149 0.6149 -0.0686 -0.0686
6.0 0.5487 0.5487 -0.0638 -0.0638
7.0 04874 0.4874 -0.0588 -0.0588
9.0 0.3799 0.3799 -0.0489 -0.0489
11 0.2915 0.2915 -0.0397 -0.0397
13 0.2202 0.2202 -0.0317 -0.0317
16 0.1399 0.1399 -0.0223 -0.0223
20 0.0894 0.0894 -0.0137 -0.0137
21 0.0565 0.0565 -0.0121 -0.0121
22 0.0452 0.0452 -0.0107 -0.0107

Table 15 Comparison of results of@(f]) ,and 9'(77) at Pr=1

0(n) &(n)
n  Ostrach[2] Presentstudy Ostrach[2] Present study
0.0 1.0000 1.0000 -0.5671 -0.5671
1.0 0.4638 0.4638 -0.4589 -0.4589
2.0 0.1422 0.1422 -0.1907 -0.1907
3.0 0.0339 0.0339 -0.0509 -0.0509
4.0 0.0072 0.0072 -0.0115 -0.0115
5.0 0.0014 0.0014 -0.0024 -0.0024

6.0 0.0002 0.0002 -0.0005 -0.0005
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Table 16 Comparison of results oft9(77) .and 19'(77) at Pr=2

0(n) o(n)
n Ostrach|[2] Present Ostrach|[2] Present
study study
0.0 1.0000 1.0000 -0.7165 -0.7165
1.0 0.3476 0.3476 -0.5002 -0.5002
2.0 0.0592 0.0592 -0.1207 -0.1207
3.0 0.0066 0.0066 -0.0152 -0.0152
4.0 0.0007 0.0007 -0.0015 -0.0015
5.0 0.0001 0.0001 -0.0686 -0.0686
6.0 0.5487 0.5487 -0.0001 -0.0001
7.0 0.0000 0.0000 0.0000 0.0000
8.0 0.0000 0.0000 0.0000 0.0000
9.0 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 0.0000

Table 17 Comparison of results of@(f]) ,and 6"(77) at Pr=10

0(n) o(n)
n  Ostrach[2] Presentstudy Ostrach[2] Present study
0.0 1.0000 1.0000 -1.1694 -1.1694
1.0 0.1090 0.1090 -0.3753 -0.3753
2.0 0.0012 0.0012 -0.0065 -0.0065
3.0 0.0000 0.0000 0.0000 0.0000
4.0 0.0000 0.0000 0.0000 0.0000
5.0 0.0000 0.0000 0.0000 0.0000
7.0 0.0000 0.0000 0.0000 0.0000
8.0 0.0000 0.0000 0.0000 0.0000
9.0 0.0000 0.0000 0.0000 0.0000
10  0.0000 0.0000 0.0000 0.0000

Table 18 Comparison of results of@(f]) ,and (9'(77) at Pr=100

0(n) 0'(n)
n  Ostrach[2] Presentstudy Ostrach[2] Present study
0.0 1.0000 1.0000 -2.1910 -2.1910
1.0 0.0012 0.0012 -0.0149 -0.0149
2.0 0.0000 0.0000 0.0000 0.0000
3.0 0.0000 0.0000 0.0000 0.0000
4.0 0.0000 0.0000 0.0000 0.0000
7.0 0.0000 0.0000 0.0000 0.0000
8.0 0.0000 0.0000 0.0000 0.0000
9.0 0.0000 0.0000 0.0000 0.0000
10 0.0000 0.0000 0.0000 0.0000
11 0.0000 0.0000 0.0000 0.0000
12 0.0000 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000 0.0000
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Table 19 Comparison of results of@(?]) .and 9'(77) at Pr=1000

o(n) 0'(n)
n Ostrach [2] | Presentstudy | Ostrach[2] | Present study
0.0 | 1.0000 1.0000 -3.9660 -3.9660
1.0 | 0.0000 0.0000 0.0000 0.0000
2.6 | 0.0000 0.0000 0.0000 0.0000
3.0 | 0.0000 0.0000 0.0000 0.0000
5.0 | 0.0000 0.0000 0.0000 0.0000
5.8 | 0.0000 0.0000 0.0000 0.0000
7.0 | 0.0000 0.0000 0.0000 0.0000
8.0 | 0.0000 0.0000 0.0000 0.0000
10 | 0.0000 0.0000 0.0000 0.0000
20 | 0.0000 0.0000 0.0000 0.0000
22 | 0.0000 0.0000 0.0000 0.0000
23 | 0.0000 0.0000 0.0000 0.0000

Table 20 Comparison of results of f"(f]) and 9'(77) at different Prandtl numbers

Kuo[22] Na and Hibb[12] Present study

Pr fr(0) @) f'(0) @) f'(0) ¢(0)

0.72 0.6760 -0.5046 0.6760 -0.5046 0.6760 -0.5046
0.60 0.6947 -0.4721 0.6946 -0.4725 0.6947 -0.4721
0.50 0.7132 -0.4411 0.7131 -0.4420 0.7132 -0.4411
0.40 0.7356 -0.4053 0.7354 -0.4066 0.7356 -0.4053
0.30 0.7636 -0.3623 0.7633 -0.3641 0.7636 -0.3623
0.20 0.8015 -0.3078 0.8009 -0.3101 0.8015 -0.3078
0.10 0.8600 -0.2298 0.8590 -0.2326 0.8600 -0.2298
0.06 0.8974 -0.1834 0.8961 -0.1864 0.8974 -0.1834
0.04 0.9233 -0.1526 0.9221 -0.1556 0.9233 -0.1526
0.01 0.9845 -0.0832 0.9887 -0.0817 0.9885 -0.0832
1.00 0.6421 -0.5671 0.6421 -0.5671 0.6421 -0.5671
1.10 0.6323 -0.5862 0.6323 -0.5860 0.6323 -0.5862
1.20 0.6233 -0.6040 0.6234 -0.6036 0.6233 -0.6040
1.30 0.6151 -0.6208 0.6152 -0.6202 0.6151 -0.6208
1.40 0.6075 -0.6365 0.6076 -0.6358 0.6075 -0.6365
1.50 0.6005 -0.6515 0.6006 -0.6506 0.6005 -0.6515
1.60 0.5939 -0.6656 0.5940 -0.6646 0.5939 -0.6656
1.70 0.5877 -0.6792 0.5879 -0.6780 0.5877 -0.6792
1.80 0.5819 -0.6921 0.5821 -0.6908 0.5819 -0.6921
1.90 0.5764 -0.7045 0.5767 -0.7031 0.5764 -0.7045
2.00 0.5712 -0.7164 0.5715 -0.7149 0.5712 -0.7164
2.00 0.5712 -0.7164 0.5713 -0.7165 0.5712 -0.7164
3.00 0.5308 -0.8154 0.5312 -0.8145 0.5308 -0.8154
4.00 0.5029 -0.8914 0.5036 -0.8898 0.5029 -0.8914
5.00 0.4817 -0.9539 0.4827 -0.9517 0.4817 -0.9539
6.00 0.4648 -1.0073 0.4660 -1.0047 0.4648 -1.0073
7.00 0.4507 -1.0542 0.4522 -1.0512 0.4507 -1.0542
8.00 0.4387 -1.0961 0.4405 -1.0930 0.4387 -1.0961
9.00 0.4283 -1.1342 0.4304 -1.1309 0.4283 -1.1342
10.00  0.4191 -1.1692 0.4215 -1.1658 0.4191 -1.1692

33
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Table 21 Comparison of results of f"(77) at different Prandtl number

f'(0)

Pr Kuiken [34] Mosta [17] Present study
0.001 1.12313813 1.12313813 1.12313813
0.01 1.06338086 1.06338086 1.06338086
0.1 0.92408304 0.92408304 0.92408304
1 0.69321163 0.69321163 0.69321163
10 0.44711652 0.44711652 0.44711652
100 0.26452354 0.26452354 0.26452354
1000 0.15129020 0.15129020 0.15129020
10000 0.08554085 0.08554085 0.08554085

Table 22 Comparison of results of f "(77) at different Prandtl number

-0'(0)
Pr Kuiken [34] Mostaetal. [17] Mostaetal. [17] Present study
0.001  0.04680746  0.04680746 0.04680746 0.04680746
0.01 0.13576074  0.13576074 0.13576074 0.13576074
0.1 0.35005967  0.35005967 0.35005967 0.35005967
1 0.76986120  0.76986120 0.76986119 0.76986121
10 1.49709921  1.49709921 1.49709921 1.49709921
100 2.74688550  2.74688550 2.74688549 2.74688550
1000 493494763  4.93494763 4.93494756 4.93494762
10000  8.80444927  8.80444927 8.80444960 8.80444958

Although, the nonlinear partial differential equations are the same in all aspects to the present
problems under investigation, there are slight differences between the transformed nonlinear
ordinary differential equations in Mosta et al. [17] of Eq. (7) and developed Eq. (12) and (13) in
this present study (where the volume-fraction of the nanoparticle is set to zero) due to the
differences in the adopted similarity variables. It is shown that using the multi-DTM as applied
in this work to the transformed nonlinear ordinary differential equations in Mosta et al. [17],
excellent agreements are recorded between the results of the present study and that of Mosta et al.
[17] and Kuiken [34] as shown in Tables (17) and (18).

The variations of nanoparticle volume fraction with dynamic viscosity and thermal
conductivity ratios of Copper (1) Oxide-water nanofluid are shown in Fig (2) and (3), respectively.
Also, Fig. (3) show the effects of nanoparticle shape on thermal conductivity ratio. It is depicted
in the figure that the thermal conductivity of nanofluid varies linearly and increases with increase
in nanoparticle volume fraction. It is also observed that the suspensions of particles with high
shape factor or low sphericity have higher thermal conductivity ratio of the nanofluid With
spherical shape nanoparticle have the lowest thermal conductivity ratio and lamina shape
nanoparticle have the highest thermal conductivity ratio. The effects of the flow and heat transfer
controlling parameters on the velocity and temperature distributions are shown in Figs. (4-17) for
different shapes, type and volume-fraction of nanoparticles at Prandtl number of 0.01-1000.
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Figure 2 Variation of nanofluid dynamic viscosity Figure 3 Effects of nanoparticle shape on thermal
ratio with nanoparticle volume fraction conductivity ratio of nanofluid

7.1 Effect of nanoparticle volume fraction on nanofluid velocity and temperature distributions
for different values of Prandtl number

Figs. (4-7) show the effects nanoparticle concentration/volume fraction and Prandtl number on velocity
and temperature profiles Copper (II) Oxide-water nanofluid. It is indicated in the Figures that as the
volume-fraction or concentration of the nanoparticle in the nanofluid increases, the velocity decreases.
However, an opposite trend in the temperature profile is observed i.e. the nanofluid temperature
increases as the volume-fraction of the nanoparticles in the basefluid increases. This is because, the
solid volume fraction has significant impacts on the thermal conductivity.

The increased volume fraction of nanoparticles in basefluid results in higher thermal
conductivity of the basefluid which increases the heat enhancement capacity of the basefluid.
Also, one of the possible reasons for the enhancement on heat transfer of nanofluids can be
explained by the high concentration of nanoparticles in the thermal boundary layer at the wall
side through the migration of nanoparticles. It should also be stated that the thickness of thermal
boundary layer rises with increasing the values of nanoparticle volume fraction. This
consequently reduces the velocity of the nanofluid as the shear stress and skin friction are
increased. The figures also show the effects of Prandtl number (Pr) on the velocity and
temperature profiles. It is indicated that the velocity of the nanofluid decreases as the Pr
increases but the temperature of the nanofluid increases as the Pr increases.

This is because the nonofluid with higher Prandtl number has a relatively low thermal
conductivity, which reduces conduction, and thereby reduces the thermal boundary-layer
thickness, and as a consequence, increases the heat transfer rate at the surface. For the case of
the fluid velocity that decreases with the increase of Pr, the reason is that fluid of the higher
Prandtl number means more viscous fluid, which increases the boundary-layer thickness and
thus, reduces the shear stress and consequently, retards the flow of the nanofluid.

Also, it can be seen that the velocity distribution for small value of Prandtl number consist of
two distinct regions. A thin region near the wall of the plate where there are large velocity
gradients due to viscous effects and a region where the velocity gradients are small compared
with those near the wall. In the later region, the viscous effects are negligible and the flow of
fluid in the region can be considered to be inviscid.

Also, such region tends to create uniform accelerated flow at the surface of the plate.
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The use of nanoparticles in the fluids exhibited better properties relating to the heat transfer of
fluid than heat transfer enhancement through the use of suspended millimeter- or micrometer-
sized particles which potentially cause some severe problems, such as abrasion, clogging, high
pressure drop, and sedimentation of particles. The very low concentrations applications and
nanometer sizes properties of nanoparticles in base fluid prevent the sedimentation in the flow
that may clog the channel. It should be added that the theoretical prediction of enhanced thermal
conductivity of the base fluid and prevention of clogging, abrasion, high pressure drop and
sedimentation through the addition of nanoparticles in base fluid have been supported with
experimental evidences in literature.

7.2 Effect of nanoparticle shape on nanofluid velocity and temperature distributions for
different values of Prandtl number

It has observed experimentally that the nanoparticle shape have significant impacts on the
thermal conductivity. Therefore, the effects of nanoparticle shape at different values of Prandtl
number on velocity and temperature profiles of Copper (II) Oxide-water nanofluid are shown
in Fig. (8-13). Itis indicated that the maximum decrease in velocity and maximum increase in
temperature are caused by lamina, platelets, cylinder, bricks and sphere, respectively.

It is observed that lamina shaped nanoparticle carries maximum velocity whereas spherical
shaped nanoparticle has better enhancement on heat transfer than other nanoparticle shapes.

In fact, it is in accordance with the physical expectation since it is well known that the lamina
nanoparticle has greater shape factor than other nanoparticles of different shapes, therefore, the
lamina nanoparticle comparatively gains maximum temperature than others. The velocity
decreases is maximum in spherical nanoparticles when compared with other shapes. The
enhancement observed at lower volume fractions for non-spherical particles is attributed to the
percolation chain formation, which perturbs the boundary layer and thereby increases the local
Nusselt number values.
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It is evident from this study that proper choice of nanoparticles will be helpful in controlling
velocity and heat transfer. It is also observed that irreversibility process can be reduced by using
nanoparticles, especially the spherical particles. This can potentially result in higher
enhancement in the thermal conductivity of a nanofluid containing elongated particles
compared to the one containing spherical nanoparticle, as exhibited by the experimental data in
the literature.
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7.3 Effect of type of nanoparticle on nanofluid velocity and temperature distribution for
different values of Prandtl number

The variations of the velocity and temperature profiles against n for various types of
nanoparticles (TiOz, CuO, Al203 and SWCNTSs) are shown in Fig. (14-17). Using a common
basefluid for all the nanoparticle types, it is observed that the maximum decrease in velocity
and maximum increase in temperature are caused by TiO2, CuO, Al203 and SWCNTSs,
respectively. It is observed that SWCNTSs nanoparticle carries maximum decreases velocity but
has better enhancement on heat transfer than other nanoparticle shapes.

In accordance with the physical expectation well, the SWCNTSs nanoparticle has higher thermal
conductivity than other types of nanoparticles, therefore, the SWCNTs nanoparticle
comparatively gains maximum temperature than others. The increased thermal conductivity of
the base fluid due to the use of nanoparticle of higher thermal conductivity increases the heat
enhancement capacity of the base fluid. Also, it is observed that the velocity decreases is
maximum in SWCNTSs nanoparticles when compared with other type of nanoparticles.
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This is because, the solid thermal conductivity has significant impacts on the momentum
boundary layer of the nanofluid. The thickness of the momentum boundary layer increases
with the increase in thermal conductivity. It is observed that the thickness of the thermal
boundary layer enhances in presence of higher thermal conductivity nanoparticle.

Therefore, the sensitivity of the boundary layer thickness to the type of nanoparticle is
correlated to the value of the thermal conductivity of the nanoparticle used which consequently
leads to enhancement of thermal conductivity of the nanofluid.

Conclusion

In this work, free convection boundary layer flow and heat transfer of nanofluids of different
shapes nano-size particles over a vertical plate at very low and high values of Prandtl number
have been analyzed. The governing systems of nonlinear partial differential equations of the
flow and heat transfer processes are transformed to system of nonlinear ordinary differential
equation through similarity variables. The systems of fully coupled nonlinear ordinary
differential equations have been solved using multi-step differential transformation method.
The accuracies of the developed analytical solutions were verified with the results generated by
some other methods as presented in the past works.
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The developed analytical solutions were used to investigate the effects of Prandtl number,
nanoparticles size and shapes on the flow and heat transfer behaviour of various nanofluids.
From the paramtric studies, the following observations were established.

I. The velocity of the nanofluid decreases as the Prandtl number increases but the
temperature of the nanofluid increases as the Prandtl number increases.

I The velocity of the nanofluid decreases as the volume-fraction or concentration of
the nanoparticle in the basefluid increases. However, an opposite trend or behaviour
in the temperature profile was observed which showed that as the nanofluid
temperature increases as the volume-fraction of the nanoparticles in the basefluid
increases.

iii. The lamina shaped nanoparticle carries maximum velocity whereas spherical shaped
nanoparticle has better enhancement on heat transfer than other nanoparticle shapes.
The maximum decrease in velocity and maximum increase in temperature are
caused by lamina shaped nanoparticle and followed by platelets, cylinder, bricks
and sphere shaped nanoparticles, respectively.

Iv. Using a common basefluid to all the nanoparticle types considered in this work, it
was observed that SWCNTSs nanoparticle carries maximum decrease in velocity but
has better enhancement on heat transfer than other nanoparticle shapes. Also, it was
observed that that the maximum decrease in velocity and maximum increase in
temperature are caused by TiO2 and followed by CuO, Al203 and SWCNTSs
nanoparticles, in that order.

The present study reveals and exposes the predominant factors as they affect the boundary layer
of free convection flow and heat transfer of nanofluids. Moreover, the high level of accuracy
and versatility of differential transformation method-Padé approximate technique has been
demonstrated. It is hoped that the present study will enhance the understanding as it provides
physical insights into the free convection boundary-layer problems.
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Nomenclature

specific heat capacity

thermal conductivity

shape factor

Prandtl number

velocity component in x-direction

velocity component in z-direction

axis perpendicular to plates

axis along the horizontal direction
axis along the vertical direction

I3 72

< X< < £

Symbols

volumetric extension coefficients

density of the fluid

dynamic viscosity

similarity variable

sphericity

volume fraction or concentration of the nanofluid
Dimensionless temperature

Subscript
f  fluid
s  solid
nf  nanofluid
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