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In this study, free vibration of functionally graded (FG) rectan-
gular plates for various types of boundary conditions has been
presented. The properties of the plate are assumed as power-
law form along the thickness direction, while poisson’s ratio is
kept constant. The governing equations of motion are derived
based on Mindlin plate theory. The numerical solution, differ-
ential quadrature method (DQM) is used to discretized the sys-
tem of partial differential equations and boundary conditions.
The numerical results on natural frequencies of the FG plate
for combination of boundary conditions, volume fraction index,
radii to thickness, and aspect ratio are presented and with exist-
ing results in the literature are compared.
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1 Introduction

Functionally graded materials (FGMs) are designed so that material properties vary smoothly and con-
tinuously through the thickness from the surface of a ceramic exposed to high temperature to that of a
metal on the other surface [1].
Many researches on analysis of free and forced vibration of plate-type structures have been reported.
Leissa [2,3] studied on free vibration of rectangular isotropic plates based on the classical Kirchhoff-Love
hypothesis. The analysis of plate was considered in combinations of simply supported (S), clamped (C),
and free (F) edge conditions. Gorman [4] obtained the exact solutions for the free in-plane vibration
of rectangular plates for two distinct types of simply supported boundary conditions. where the bound-
ary condition was two opposite edges simply supported while the other two edges are both clamped or
both free. Matsunaga [5] employed power series expansion for displacement components in conjunc-
tion with Hamilton’s principles to evaluate the natural frequency of uniform thick plates with simply
supported edges. Rui Li et al. [6] presented a developed symplectic superposition method for free vi-
bration problems. They obtained a general set of equations for determining the natural frequencies and
mode shapes of the plates with any point supports. Fallah et al. [7] studied free vibration of moderately
thick rectangular FG plates resting on Winkler model elastic foundation with various combinations of
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boundary conditions. They obtained governing equations of motion based on the Mindlin plate theory
and presented a semi-analytical solution using the extended Kantorovich method. Y.F. Xing, T.F. Xu,
[8] presented the exact solutions of three configurations (G-G-C-C, SS-G-C-C and C-C-C-G) for the first
time by using separation of variables method for free vibrations of orthotropic rectangular thin plates.

The differential quadrature method in compared with the finite element method and finite difference
methods, in addition to the its ease of use and implementation, it can generate numerical results with
high-order of accuracy by using a considerably smaller number of grid points and therefore requiring
relatively little computational effort [9,10].
The differential quadrature method, which was first introduced by Bellman and his associates [11,12],as
a discretization technique for solving directly the governing equations is used in engineering and math-
ematics. It approximates the derivative of a function, with respect to a variable at a given grid point, by
a weighed linear summation of the function values at all of the grid points in the domain of that vari-
able. Malekzadeh and Karami [13] used DQM for free vibration analysis of thick plates with variable
thickness on two-parameter elastic foundation. Ferreira et al. [14] combined the generalized DQM with
the Carrera Unified Formulation to predict the static deformations and the free vibration behavior of thin
and thick isotropic as well as cross-ply laminated plates. They showed that proposed methodology to
be able to deal not only with fully clamped or completely simply-supported boundary conditions, but
also with clamped, supported or free mixed external conditions. Rui Li et al. [15] obtained accurate
analytic solutions for free vibration of rectangular thick plates with an edge free. They used for first time
an up-to-date rational superposition method in the symplectic space for thick plates free vibration. P.
Malekzadeh and S.M. Monajjemzadeh [16] obtained the nonlinear dynamic response of thin FG plates
under concentrated moving load using the finite element method. First, they derived the nonlinear equa-
tions of motion based on the Classical Plate Theory by utilizing Hamilton’s principle and then, employed
Newmark’s time integration scheme in conjunction with Newton-Raphson method. S.A. Eftekhari, A.A.
Jafari [17] presented a mixed Ritz-DQ method to study the free and forced vibration of rectangular plates.
They reported numerical results of their studies for various type of boundary conditions and concluded
the presented method has more efficiency and accuracy than other numerical methods.

In this paper, the linear vibration equations of functionally graded rectangular plates are derived
based on Mindlin plate theory by using Hamilton’s principle. The influence of transverse shear and
rotary inertia is taken into account. The researcher have applied eighth boundary conditions which are all
forms that can be considered deploying simply supported (S), clamped (C), and free (F) on these plates.
The effect of volume fraction index n FG materials on natural frequency in combination of different
boundary conditions for some aspect ratio is investigated. This appears to be the first thorough study by
using DQM and based on Mindlin plate theory that presents effects of boundary conditions, material, and
geometrical parameters on natural frequencies of FG rectangular plates.

2 Problem Formulation

Consider an FG rectangular plate of length a, width b, and a uniform thickness h as shown in Fig. (1). The
plate is referred to a Cartesian coordinate system (x,y,z) with the co-ordinates x, and y along the in-plane
directions and z in thickness direction, positive downward. Here, it is assumed that the material properties
(i.e., Young’s modulus E and density ρ ) of the FG plate vary through the plate’s thickness according to
power-law function for the volume fraction of the constituents which introduced by Wakashima et al. as
follows: [18]

P (z) = Pm + (Pc − Pm)

(
z

h
+

1

2

)n
(1)
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Figure 1 The geometry of FGM plate

In which P (z) denotes a typical material property (E; ρ), Pc and Pm refer to ceramic and metal
constituents, respectively, and n which is called volume fraction index and is a parameter describing the
material variation profile through the thickness of the FG plate.

Displacement field of rectangular plate in the Cartesian coordinate system according to Mindlin’s
assumptions may be written as:

u1 (x, y, z, t) = −zθx (x, y, t) (2)

u2 (x, y, z, t) = −zθy (x, y, t) (3)

u3 (x, y, z, t) = w (x, y, t) (4)

where u1 and u2 are the in-plane displacements of plate in x-, and y- directions, and u3 is its lateral
deflection. θx and θy present the transverse normal rotation about the x-, and y- axes.
Using equations (2)–(4), the linear strain components can be written as:

εxx =
∂u1
∂x

(5)

εyy =
∂u2
∂y

(6)

γxy =
∂u1
∂y

+
∂u2
∂x

(7)

γxz =
∂u1
∂z

+
∂u3
∂x

(8)

γyz =
∂u2
∂z

+
∂u3
∂y

(9)

Based on Hook’s law, for the plane stress case, stress-strain relations are obtained as:

σxx =
E(z)

1− ν2
(εxx + νεyy) (10)

σyy =
E(z)

1− ν2
(εyy + νεxx) (11)

σxy =
E(z)

2 (1 + ν)
γxy (12)

σxz =

∫ (
∂σxx
∂x

+
∂σxy
∂y

)
dz (13)

σyz =

∫ (
∂σyy
∂y

+
∂σxy
∂x

)
dz (14)

Using Hamilton’s principle ∫ t2

t1

(δK − δU) dt = 0 (15)
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where δK and δU are the variation of the kinetic energy and potential energy of the FG plate. Potential
energy U , the kinetic energy K of the plate are given by:

U =
1

2

∫∫∫
V

(σxxεxx + σyyεyy + σxyγxy + σxzγxz + σyzγyz) dV (16)

K =
1

2

∫∫∫
V
ρ v20 dV (17)

in which v0 denotes total velocity of each point of plate as:

v20 =
√
ẇ2 + θ̇2x + θ̇2y (18)

By substituting the variation of relations (16) and (17) into equation (15), the governing equations of
motion are obtained as:

Axx

[
−κ1− ν

2

(
θx +

∂w

∂x

)]
+ (19)

Cxx

[(
∂2θx
∂x2

)
+

1− ν
2

(
∂2θx
∂y2

)
+

1 + ν

2

(
∂2θy
∂y∂x

)]
= IC

∂2θx
∂t2

Axx

[
−κ1− ν

2

(
θy +

∂w

∂y

)]
+ (20)

Cxx

[(
∂2θy
∂y2

)
+

1− ν
2

(
∂2θy
∂x2

)
+

1 + ν

2

(
∂2θx
∂x∂y

)]
= IC

∂2θy
∂t2

Axx

[
−κ1− ν

2

(
∂2w

∂x2
+
∂2w

∂y2
+
∂θx
∂x

+
∂θy
∂y

)]
= IA

∂2w

∂t2
(21)

where

Axx =

∫
E(z)

1− ν2
dz , Cxx =

∫
E(z)

1− ν2
z2 dz

IA =

∫
ρ(z) dz , IC =

∫
ρ(z)z2 dz (22)

κ = π2/12

κ is corection factor.
The essential boundary conditions for simply supported, clamped, and free edges of plate are as follows
:
Simply supported edge (S)

x=0, a θy = w = Mx = 0

y=0, b θx = w = My = 0 (23)

Clamped edge (C)

x=0, a θx = θy = w = 0

y=0, b θx = θy = w = 0 (24)

Free edge (F)

x=0, a Qx = Mx = Mxy = 0

y=0, b Qy = My = Mxy = 0 (25)
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where Mx, My, Mxy are moments and Qx, Qy are shear force stress resultants respectively.

Qx = κ
1− ν

2
Axx

(
∂w

∂x
+ θx

)
(26)

Qy = κ
1− ν

2
Axx

(
∂w

∂y
+ θy

)
(27)

Mx = Cxx

(
∂θx
∂x

+ ν
∂θy
∂y

)
(28)

My = Cxx

(
∂θy
∂y

+ ν
∂θx
∂x

)
(29)

Mxy =
1− ν

2
Cxx

(
∂θx
∂y

+
∂θy
∂x

)
(30)

3 Differential quadrature method

Let ψ(x, y) be a solution of a differential equation and 0 ≤ xi ≤ a, 0 ≤ yi ≤ b be a set of sample points
in the direction of x-axis and y-axis. According to DQM, the rth-order derivative of the function ψ(x, y)
at a point x = xi along any line y = yj parallel to the x-axis may be written as [19]

ψ(r)|x=xi =

Nx∑
k=1

A
(r)
ik ψkj (31)

and sth-order y-partial derivative at a discrete point y = yj along any line x = xi parallel to the y-axis
may be written as

ψ(s)|y=yj =

Ny∑
l=1

B
(s)
jl ψil (32)

where Nx and Ny are the number of sample points in the direction of x-axis and y-axis, A(r)
ik and B(s)

jl

are the weighting coefficients of the rth-order and sth-order derivative. The weighting coefficients can be
determined by the functional approximations in the direction of x and y axis. Using the Lagrange inter-
polation polynomials as the approximating functions, Quan and Chang obtained the following algebraic
formulations to compute the first-order weighting coefficients [20]

A
(1)
ik =

∏
(xi)

(xi − xk)
∏

(xk)
, i 6= k, i, k = 1, 2, . . . , Nx (33)

A
(1)
ii = −

Nx∑
l=1,l 6=i

A
(1)
il , i = k, i = 1, 2, . . . , Nx (34)

where

∏
(xi) =

Nx∏
k=1, k 6=i

(
xi − xk

)
,

∏
(xk) =

Nx∏
k=1, k 6=i

(
xk − xk

)
(35)
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The weighting coefficients of the rth-order derivative can be obtained from the following recurrence
relationship [19],

A
(r)
ik = r

[
A

(r−1)
ii A

(r)
ik −

A
(r−1)
ik

xi − xk

]
, i 6= k, i, k = 1, 2, . . . , Nx (36)

A
(r)
ii = −

Nx∑
l=1,l 6=i

A
(r)
il , i = k, i = 1, 2, . . . , Nx (37)

Eqs (33) through (37) are given for the x-partial derivatives; the equations for the y-partial derivatives
follow in an identical manner.
One of the key factors in the accuracy and rate of convergence of the DQ solutions is the choice of grid
points. It has been suggested that the zeros of some orthogonal polynomials are commonly adopted as
non-uniformly spaced grid points can generate more accurate solutions. Bert and Malik firstly introduced
grid points for calculation of weighting coefficients as follows [19].

xi =
a

2

[
1− cos

(
i− 2

Nx − 1
π

)]
, yj =

b

2

[
1− cos

(
j − 2

Ny − 1
π

)]
(38)

It was shown that the DQ solutions with this type of sample points produce better accuracy than the
commonly used uniform and non-uniform grid points.

4 Dimensionless governing equations

To solve the governing equations (19), (20), and (21), these equations must be obtained in dimensionless
form.
To this purpose the following dimensionless parameters can be used as

w = W (x, y)eiωt , θx = Θx(x, y)eiωt , θy = Θy(x, y)eiωt ,

ω = Ω
(
Cxx/IAa

4
)1/2

, t = T (IAa
4/Cxx)1/2 , x = Xa , y = Y b,

λ1 = a/b , λ2 = a/h (39)

and finally the dimensionless governing equations can be written in the following form

λ42E
∗

ρ∗

[
−κ1− ν

2

(
Θx +

∂W

∂X

)]
+ (40)

λ22
ρ∗

[(
∂2Θx

∂X2

)
+

1− ν
2

λ21

(
∂2Θx

∂Y 2

)
+

1 + ν

2
λ1

(
∂2Θy

∂Y ∂X

)]
=
∂2Θx

∂T 2

λ42E
∗

ρ∗

[
−κ1− ν

2

(
Θy + λ1

∂W

∂Y

)]
+ (41)

λ22
ρ∗

[
λ21

(
∂2Θy

∂Y 2

)
+

1− ν
2

(
∂2Θy

∂X2

)
+

1 + ν

2
λ1

(
∂2Θx

∂X∂Y

)]
=
∂2Θy

∂T 2

K

(
∂2W

∂X2
+ λ21

∂2W

∂Y 2
+
∂Θx

∂X
+ λ1

∂Θy

∂Y

)
=
∂2W

∂T 2
(42)
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where

E∗ =
n+ Ec

Em

(n+ 1)
[

1
12 +

(
Ec
Em
− 1
)(

1
n+3 −

1
n+2 + 1

4(n+1)

)]

ρ∗ =
12
(
ρc
ρm
− 1
)(

1
n+3 −

1
n+2 + 1

4(n+1)

)
+ 1

12
[
1 + 1

n+1

(
ρc
ρm
− 1
)] (43)

K = −κλ
2
2E
∗(1− ν)

2

5 Solving process

Here, the governing equations and boundary conditions are discretized based on differential quadrature
technique. To obtain the DQ form of equations, first x and y directions of the plate are discretized to N
and M grid points and then governing equations and boundary conditions, via DQ method are discretized
as follows:

− λ42E
∗

I∗2

[
κ

1− ν
2

(
Θx ij +

N∑
n=1

c
(1)
in Wnj

)]
+ (44)

λ22
I∗2

[(
N∑
n=1

c
(2)
in Θxnj

)
+ λ1

1 + ν

2

(
M∑
m=1

N∑
n=1

c̄
(1)
jmc

(1)
in Θymn

)
+ λ21

1− ν
2

(
M∑
m=1

c̄
(2)
jmΘx im

)]
= Ω2Θx ij

λ42E
∗

I∗2

[
κ

1− ν
2

(
Θy ij + λ1

M∑
m=1

c̄
(1)
jmWim

)]
+ (45)

λ22
I∗2

[
λ21

(
M∑
m=1

c̄
(2)
jmΘy im

)
+ λ1

1 + ν

2

(
N∑
n=1

M∑
m=1

c
(1)
in c̄

(1)
jmΘxnm

)
+

1− ν
2

(
N∑
n=1

c
(2)
in Θy nj

)]
= Ω2Θy ij

K

( N∑
n=1

c
(2)
in Wnj

)
+ λ21

(
M∑
m=1

c̄
(2)
jmWim

)
+

 N∑
n=1

c
(1)
in Θxnj

+ λ1

(
M∑
m=1

c̄
(1)
jmΘy im

) = Ω2Wij

(46)

and the stress resultunts:

Qx ij = κ
1− ν

2

(
Axx

N∑
n=1

A
(1)
in Wnj + Θx ij

)
(47)

Qy ij = κ
1− ν

2
Axx

(
λ1

M∑
m=1

B
(1)
jmWin + Θy ij

)
(48)

Mx ij = Cxx

(
N∑
n=1

A
(1)
in Θxnj + νλ1

M∑
m=1

B
(1)
jmΘy im

)
(49)

Mx ij = Cxx

(
λ1

M∑
m=1

B
(1)
jmΘy im + ν

N∑
n=1

A
(1)
in Θxnj

)
(50)

Mxy ij =
1− ν

2
Cxx

(
N∑
n=1

A
(1)
in Θy nj + λ1

M∑
m=1

B
(1)
jmΘx im

)
(51)
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Figure 2 Configurations of combined simply supported ,clamped and free rectangular plates are indicated by (a)
SSSS, (b) CCCC, (c) SCSS, (d) CSCC, (e) SCSC, (f) CSSC, (g) SSSF, (h) CCCF. For convenience, S, C and F in
a four-letter symbol are denoted as a simply supported, a clamped and free respectively.

According to the governing equations and boundary conditions and by using DQ method, the natural fre-
quencies can be obtained. After a long reformulation, the governing equations and boundary conditions
can be converted to the following matrix form [9].

[
BB BD
DB DD

]
dB

Θx ij

Θy ij

Wij

 = Ω2


0 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I




dB

Θx ij

Θy ij

Wij

 (52)

where

dB =
[
ΘxB ΘyB WB

]T
ΘxB =

[
Θx 11 Θx 1N ΘxN1 ΘxNN Θx 1j Θx i1 ΘxNj Θx iN

]T
ΘyB =

[
Θy 11 Θy 1N Θy N1 Θy NN Θy 1j Θy i1 Θy Nj Θy iN

]T
WB =

[
W11 W1N WN1 WNN W1j Wi1 WNj WiN

]T
i, j = 2, 3, . . . , N − 2, N − 1

and in which BB, BD, DB, DD, and I matrices are obtained according to governing and boundary equa-
tions and summarized in Appendix A.

so

Ωi = Eigenvalue
[
− [DB]

[
[BB]−1 [BD] + [DD]

]]
(53)

6 Numerical Results and Discussion

Using the method described above, frequency equation (53) is solved to obtain vibration frequencies of
rectangular plates with any arbitrary combination of boundary constraints. In the present study, however,
we only focus on eight cases which can be obtained by combining simply supported, clamped, and
free as shown in Fig. (2). To illustrate the numerical results an FG plate, the material properties of
ZrO2(ceramic) and Al(metal), as given in Table (1), are used in the numerical computations.
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Table 1 The material properties of ZrO2(ceramic) and Al (metal).

Material E (Gpa) ν ρ (Kg/m3)

ZrO2 200 0.3 5700
Al 70 0.3 2702

Table 2 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing number of the grid points

in each element

Case Nx ×Ny

Mode sequence number
Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

a 7× 7 19.736 48.797 48.797 78.114 96.365 96.365 125.167 125.167
8× 8 19.736 49.379 49.379 78.950 98.881 98.881 128.467 128.467
9× 9 19.732 49.373 49.373 78.939 98.977 98.977 128.413 128.413

10× 10 19.732 49.302 49.302 78.842 98.969 98.969 128.376 128.376
11× 11 19.732 49.302 49.302 78.843 98.493 98.493 127.986 127.986
12× 12 19.732 49.305 49.305 78.846 98.496 98.496 127.991 127.991
13× 13 19.735 49.305 49.304 78.846 98.524 98.524 128.013 128.013

b 7× 7 35.929 76.386 76.386 109.980 138.708 139.734 166.995 166.995
8× 8 35.928 73.165 73.165 107.705 146.375 147.416 175.188 175.188
9× 9 35.944 73.235 73.235 107.843 131.070 131.703 164.105 164.105

10× 10 35.944 73.247 73.247 107.908 131.440 132.084 164.507 164.507
11× 11 35.945 73.249 73.249 107.907 131.166 131.797 164.337 164.337
12× 12 35.945 73.247 73.247 107.909 131.169 131.799 164.345 164.345
13× 13 35.945 73.247 73.247 107.909 131.152 131.783 164.333 164.333

c 7× 7 23.603 51.051 58.860 85.762 97.812 117.952 130.848 141.508
8× 8 23.641 51.705 58.513 85.938 100.456 116.554 133.699 143.567
9× 9 23.632 51.680 58.653 86.087 100.514 113.069 133.856 140.497

10× 10 23.632 51.620 58.571 85.972 100.527 113.445 133.773 140.828
11× 11 23.633 51.619 58.567 85.979 100.052 112.973 133.424 140.441
12× 12 23.633 51.621 58.570 85.981 100.058 112.933 133.422 140.422
13× 13 23.633 51.622 58.570 86.981 100.085 112.957 133.446 140.440

d 7× 7 31.758 63.469 74.176 101.773 120.726 137.826 152.180 161.839
8× 8 31.793 63.145 70.898 100.396 119.509 145.625 154.193 170.110
9× 9 31.794 63.308 70.924 100.562 116.158 129.849 151.316 158.763

10× 10 31.796 63.231 70.945 100.531 116.527 130.249 151.725 159.038
11× 11 31.795 63.229 70.943 100.540 116.072 129.954 151.361 158.890
12× 12 31.795 63.231 70.942 100.539 116.034 129.959 151.351 158.885
13× 13 31.795 63.237 70.942 100.540 116.058 129.941 151.366 158.875

The eigenvalues are expressed in terms of the frequency parameter as Ω = ω
(
IAa

4/Cxx
)1/2. Con-

vergence studies are carried out for the mentioned cases (a-h) to establish appropriate number of grid
points for obtaining the accurate solutions. The convergence patterns of the frequency parameters with
the number of grid points in each element are presented in Tables (2) and (3) for cases a–d and e–h in the
same set of parameter values λ1 = 1, λ2 = 100 and n = 5. It can also be observed that the convergence
rate varies for different configurations of plate.
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Table 3 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing number of the grid points

in each element

Case Nx ×Ny

Mode sequence number
Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

e 7× 7 28.918 54.185 72.626 95.371 99.819 136.821 137.168 157.347
8× 8 28.919 54.712 69.145 94.358 102.298 140.119 144.548 166.040
9× 9 28.926 54.737 69.191 94.379 102.448 128.624 140.056 154.086

10× 10 28.926 54.672 69.203 94.371 102.440 129.007 140.120 154.418
11× 11 28.926 54.673 69.203 94.371 101.983 128.712 139.759 154.235
12× 12 28.926 54.675 69.201 94.372 101.987 128.714 139.768 154.238
13× 13 28.926 54.675 69.201 94.372 102.014 128.697 139.788 154.224

f 7× 7 26.972 60.618 60.935 92.842 118.953 119.273 146.090 146.916
8× 8 27.049 60.407 60.657 92.460 117.860 117.983 148.105 148.535
9× 9 27.032 60.527 60.774 92.760 114.361 114.515 145.398 145.702

10× 10 27.035 60.455 60.704 92.626 114.754 114.910 145.676 145.976
11× 11 27.035 60.449 60.698 92.641 114.286 114.436 145.326 145.630
12× 12 27.035 60.452 60.701 92.640 114.250 114.398 145.302 145.606
13× 13 27.035 60.452 60.701 92.641 114.273 114.422 145.321 145.624

g 7× 7 12.016 27.928 38.338 58.251 58.715 66.409 89.707 90.443
8× 8 11.789 28.001 43.669 57.802 61.875 79.011 92.820 97.911
9× 9 11.702 27.956 42.177 60.389 60.974 95.742 104.280 108.674

10× 10 11.686 27.790 41.250 59.303 63.223 95.144 96.339 109.333
11× 11 11.683 27.752 41.187 59.110 62.053 89.799 94.784 108.706
12× 12 11.683 27.747 41.184 59.047 61.748 89.994 94.395 108.694
13× 13 11.683 27.746 41.173 59.021 61.793 90.250 94.370 108.841

h 7× 7 26.205 42.182 64.354 82.799 86.006 95.991 123.188 124.935
8× 8 25.348 41.060 68.204 72.705 86.322 117.071 120.950 135.215
9× 9 24.802 41.324 65.653 73.381 84.274 117.803 120.204 133.514

10× 10 24.497 40.644 64.563 79.483 82.166 118.021 121.198 127.063
11× 11 24.309 40.455 64.055 77.719 81.651 118.165 123.285 141.836
12× 12 24.173 40.286 63.851 76.807 81.241 117.314 123.112 138.267
13× 13 24.091 40.214 63.614 76.779 81.022 117.000 122.944 133.468

In Figs. (3) - (4) for cases (a-h) and λ1 = 1, λ2 = 100 and n = 1 convergence of the first four nor-
malized dimensionless natural frequencies Ω/Ω∗ have been shown. It is observed that Ω/Ω∗ converges
with the increasing number of grid points in all boundary conditions. The figures related to cases a-h
show that the increase of the grid points improves the convergence of the presented DQ method. For
cases a-f, 13 and for g-h, 21 grid points are adequate to guarantee the convergence.

Frequency parameters corresponding to the first eight modes of vibration for cases a–f are presented
in Tables ( 4–11). Here, aspect ratio

(
a
b

)
of rectangular plate increases from 0.5 to 4. It can be seen

that when volume fraction index n increases, there is a significant increase on natural frequency with
increasing λ1.
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(a) Case a (b) Case b

(c) Case c (d) Case d

Figure 3 Convergence of normalized natural frequencies Ω/Ω∗ with respect of grid points N , for λ1 = 1,
λ2 = 100, n = 1 (Ω∗ is DQ results using N = 20).
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(a) Case a (b) Case b

(c) Case c (d) Case d

Figure 4 Convergence of normalized natural frequencies Ω/Ω∗ with respect of grid points N , for λ1 = 1,
λ2 = 100, n = 1 (Ω∗ is DQ results using N = 20).
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Table 4 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ1 for a simply supported

rectangular plate (SSSS)

λ1 References
Mode sequence number of case a

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

0.4 Leissa [3] 11.449 16.182 24.082 35.136 41.058 45.795 49.348 53.691
Present 11.446 16.181 24.071 35.097 41.026 45.756 49.235 53.637

0.5 Liew et al. [21] 12.34 19.74 32.08 41.95 49.35 49.35 61.69 71.55
Present 12.334 19.732 32.057 41.913 49.275 49.303 61.614 71.351

2/3 Leissa [3] 14.256 27.416 43.865 49.348 58.024 78.957 80.053 93.213
Present 14.252 27.402 43.829 49.303 56.964 78.841 79.882 93.053

1 Liew et al. [21] 19.74 49.35 49.35 78.96 98.70 98.70 128.3 128.3
Dawe [22] 19.732 49.303 49.303 78.841 98.515 98.515 127.999 127.999
Eftekhari [17] 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305
Liu [23] 19.732 49.303 49.303 78.841 98.515 98.515 127.999 127.999
Leissa [3] 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305
Present 19.732 49.303 49.303 78.841 98.516 98.516 128.000 128.000

1.5 Leissa [3] 32.076 61.685 98.696 111.330 128.305 177.653 180.120 209.729
Present 32.057 61.614 98.515 110.805 127.999 177.069 179.404 208.918

2 Liew et al. [3] 49.35 78.96 128.3 167.8 197.4 197.4 246.7 286.2
Present 49.303 78.841 128.000 167.262 196.564 196.671 245.616 284.278

2.5 Leissa[3] 71.556 101.163 150.511 219.599 256.610 286.218 308.425 335.566
Present 71.459 100.973 150.092 218.609 255.393 284.707 306.255 333.492

4 Liew et al. [21] 167.8 197.4 246.7 315.8 404.7 513.2 641.5 641.5
Present 167.261 196.671 245.615 313.915 401.267 518.784 634.018 650.344

Table 5 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ1 for a clamped

rectangular plate (CCCC)

λ1 References
Mode sequence number of case b

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

0.4 Leissa [3] 23.648 27.817 35.446 46.702 61.554 63.100 —– —–
Present 23.624 27.781 35.378 46.621 61.425 62.969 67.260 74.621

0.5 Liew et al. [21] 25.58 31.83 44.77 63.33 63.98 71.08 83.27 87.25
Present 24.557 31.793 44.711 63.246 63.866 70.932 83.081 87.121

2/3 Leissa [3] 27.010 41.716 66.143 66.552 79.850 100.85 —– —–
Present 26.980 41.650 65.999 66.401 79.625 100.600 102.838 124.891

1 Liu [23] 35.937 73.232 73.232 107.889 131.118 131.752 164.300 164.300
C.H.W. Ng [24] 35.989 73.407 73.407 108.249 131.622 132.244 165.074 165.074
Eftekhari [17] 35.985 73.394 73.394 108.217 131.581 132.206 —– —–
Leissa [3] 35.992 73.413 73.413 108.27 131.64 132.24 —– —–
Present 35.942 73.237 73.237 107.888 131.125 131.756 164.291 164.291

1.5 Leissa [3] 60.772 93.860 148.82 149.74 179.66 226.92 —– —–
Present 60.636 93.565 148.148 149.068 178.658 225.642 230.594 279.884

2 Liew et al. [21] 98.31 127.3 179.1 253.3 256.0 284.3 333.1 349.0
Present 97.981 126.784 178.158 251.737 254.077 282.040 330.076 346.283

2.5 Leissa [3] 147.80 173.85 221.54 291.89 384.71 394.37 —– —–
Present 147.029 172.795 219.870 289.423 380.780 389.892 416.233 461.384

4 Liew et al. [21] 364.8 386.3 425.1 484.0 564.7 668.0 793.8 941.6
Present 360.292 381.270 419.182 476.718 555.501 669.288 793.613 967.856
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Table 6 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ1 for one edge clamped

and the other edges simply supported rectangular plate (SCSS)

λ1 References
Mode sequence number of case c

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

0.4 Leissa [3] 11.750 17.187 25.917 37.832 41.207 46.362 52.901 54.872
Present 11.747 17.181 25.903 37.790 41.175 46.321 52.858 54.811

0.5 Liew et al. [21] 12.92 21.53 35.21 42.24 50.43 53.82 63.87 77.35
Present 12.915 21.523 35.184 42.206 50.382 53.742 63.784 77.260

2/3 Leissa [3] 15.573 31.072 44.564 55.393 59.463 83.606 88.438 93.676
Present 15.573 31.050 44.526 55.325 59.391 83.460 88.233 93.512

1 Liew et al. [21] 23.65 51.67 58.65 86.13 100.3 113.2 133.8 140.9
C.H.W. Ng [24] 23.647 51.675 58.650 86.141 100.272 113.241 133.801 140.864
Liu [23] 23.632 51.619 58.565 85.972 100.075 112.944 113.427 140.419
Leissa [3] 23.646 51.673 58.646 86.134 100.270 113.228 133.791 140.846
Present 23.632 51.619 58.565 85.972 100.077 112.942 133.429 140.418

1.5 Leissa [3] 42.528 69.003 116.267 120.996 147.635 184.101 193.802 243.496
Present 42.478 68.892 115.989 120.646 147.134 183.325 192.987 242.178

2 Liew et al. [21] 69.33 94.59 140.2 206.7 208.4 234.6 279.7 293.8
Present 69.193 94.359 139.766 205.714 207.355 233.298 277.887 291.640

2.5 Leissa [3] 103.923 128.338 172.380 237.250 322.964 346.738 391.066 429.242
Present 103.618 127.903 171.670 235.929 318.342 320.423 343.911 387.556

4 Liew et al. [21] 255.9 284.3 333.1 403.2 494.7 607.6 741.4 808.9
Present 252.315 275.181 315.422 374.716 453.865 563.594 688.985 792.657

Table 7 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ1 for one edge simply

supported and the other edges clamped rectangular plate (CSCC)

λ1 References
Mode sequence number of case d

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

0.4 Leissa [3] 23.440 27.022 33.799 44.131 58.034 62.971 —– —–
Present 23.420 26.991 33.750 44.046 57.928 62.851 66.798 73.611

0.5 Present 24.123 30.220 41.701 58.748 63.625 70.003 81.110 81.243
2/3 Leissa [3] 25.861 38.102 60.325 65.516 77.563 92.154 —– —–

Present 25.837 38.051 60.211 65.387 77.368 91.883 98.341 124.477
1 C.H.W. Ng [24] 31.828 63.338 71.087 100.815 116.376 130.388 151.938 159.534

Eftekhari [17] 31.826 63.331 71.076 100.792 116.357 130.353 —– —–
Leissa [3] 31.829 63.347 71.084 100.83 116.40 130.37 —– —–
Present 31.793 63.225 70.933 100.524 116.041 129.915 151.335 158.839

1.5 Leissa [3] 48.167 85.507 123.99 143.99 158.36 214.78 —– —–
Present 48.089 85.287 123.570 143.417 157.638 213.389 221.483 244.120

2 Present 73.237 107.889 164.292 209.450 240.748 241.764 294.212 338.115
2.5 Leissa [3] 107.07 139.66 194.41 270.48 322.55 353.43 —– —–

Present 106.714 139.064 193.264 268.605 319.954 350.156 364.198 400.872
4 Present 254.077 282.040 330.076 398.986 488.760 613.448 745.957 793.589
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Table 8 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ1 for one pair of opposite

sides which are clamped and the other opposite sides which are simply supported in the considered rectangular
plate (SCSC)

λ1 References
Mode sequence number of case e

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

0.4 Leissa [3] 12.135 18.365 27.966 40.750 41.378 47.001 56.178 56.676
Present 12.131 18.357 27.947 40.724 41.346 46.956 56.113 56.635

0.5 Liew et al. [21] 13.69 23.65 38.69 42.59 51.67 58.65 66.30 83.49
Present 13.681 23.632 38.657 42.551 51.618 58.588 66.204 83.388

2/3 Leissa [3] 17.373 35.344 45.429 62.054 62.313 88.805 94.213 97.425
Present 17.365 35.311 45.387 61.958 62.226 88.624 94.045 97.245

1 Liew et al. [21] 28.95 54.74 69.33 94.59 102.2 129.1 140.2 154.8
Liu [24] 28.922 54.666 69.193 94.359 101.994 128.674 139.765 154.199
C.H.W. Ng [24] 28.953 54.747 69.337 94.601 102.222 129.130 140.230 154.823
Eftekhari [17] 28.951 54.743 69.327 94.585 102.216 129.095 140.204 154.776
Leissa [3] 28.951 54.743 69.327 94.585 102.216 129.095 140.204 154.776
Present 28.924 54.671 69.193 94.359 102.004 128.672 139.765 154.191

1.5 Leissa [3] 56.348 78.983 123.172 146.268 170.111 189.122 212.817 276.001
Present 56.240 78.801 122.812 145.663 169.326 188.259 211.681 274.063

2 Liew et al. [21] 95.26 115.8 156.4 219.0 254.1 277.3 303.4 318.1
Present 94.951 115.372 155.686 217.740 252.315 275.181 300.986 315.421

2.5 Leissa [3] 145.484 164.739 202.227 261.105 342.144 392.875 415.691 455.305
Present 144.759 163.834 200.993 259.219 339.008 388.539 410.895 449.702

4 Liew et al. [21] 363.5 381.1 413.3 463.2 533.5 625.4 739.6 875.9
Present 359.031 376.153 407.614 456.428 524.879 623.784 740.338 967.080

Table 9 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ1 for two attached

clamped edges and two attached simply supported edges in the analyzed rectangular plate (CSSC)

λ1 References
Mode sequence number of case f

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

0.4 Leissa [3] 16.849 21.363 29.236 40.509 51.457 55.117 —– —–
Present 16.839 21.345 29.204 40.444 51.386 55.040 55.888 63.513

0.5 Present 17.760 25.181 37.938 52.276 55.898 59.501 71.759 79.012
2/3 Leissa [3] 19.952 34.024 54.370 57.517 67.815 90.069 —– —–

Present 19.940 33.990 54.292 57.430 67.680 89.835 90.293 108.362
1 C.H.W. Ng [24] 27.055 60.543 60.791 92.849 114.572 114.719 145.811 146.109

Eftekhari [17] 27.054 60.534 60.786 92.836 114.556 114.704 —– —–
Leissa [3] 27.056 60.544 60.791 92.865 114.57 114.72 —– —–
Present 27.033 60.447 60.696 92.630 114.257 114.406 145.295 145.599

1.5 Leissa [3] 44.893 76.554 122.33 129.41 152.58 202.66 —– —–
Present 44.833 76.395 121.956 129.002 151.971 201.630 202.634 243.077

2 Present 70.933 100.524 151.336 208.316 222.752 236.990 285.597 314.432
2.5 Leissa [3] 105.31 133.52 182.73 253.18 321.60 344.48 —– —–

Present 104.982 133.001 181.823 251.531 319.096 341.808 346.869 393.867
4 Present 253.127 278.377 322.330 386.284 470.788 587.181 718.921 793.100
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Table 10 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ1 for one edge free and

the other edges simply supported rectangular plate (SSSF)

λ1 References
Mode sequence number of case g

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

0.4 Leissa [3] 10.126 13.057 18.839 27.558 39.338 39.612 42.696 48.774
Present 8.736 12.107 17.673 26.378 34.882 38.230 41.449 46.975

0.5 Present 9.227 13.707 22.409 35.973 36.607 42.992 51.851 54.443
2/3 Leissa [3] 10.671 18.299 33.697 40.131 48.408 57.593 64.728 89.156

Present 9.963 17.329 32.681 38.464 46.909 56.671 62.778 86.134
1 Eftekhari [17] 11.684 27.756 41.197 59.065 61.861 90.294 94.484 108.918

Leissa [3] 11.684 27.756 41.197 59.065 61.861 90.294 94.484 108.918
Present 11.682 27.745 41.168 59.008 61.800 90.152 94.337 108.714

1.5 Leissa [3] 13.711 43.572 47.857 81.479 92.693 124.563 132.897 158.918
Present 15.399 45.935 50.518 86.335 95.672 126.383 138.411 164.236

2 Present 20.511 52.443 81.356 102.758 123.715 172.429 179.794 215.721
2.5 Leissa [3] 18.801 50.540 100.232 110.226 147.632 169.103 203.730 257.479

Present 26.853 60.881 111.813 120.022 170.381 181.870 232.275 271.225
4 Present 51.785 97.440 151.868 223.093 282.096 313.149 361.593 422.311

Table 11 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ1 for one edge free and

the other edges clamped rectangular plate (CCCF)

λ1 References
Mode sequence number of case h

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

0.4 Leissa [3] 22.577 24.623 29.244 37.059 48.283 61.922 —– —–
Present 21.689 24.709 28.548 36.122 47.614 61.559 62.636 63.987

0.5 Present 21.828 25.536 33.183 45.740 61.321 64.211 65.150 73.074
2/3 Leissa [3] 23.015 29.427 44.363 62.417 68.887 69.696 —– —–

Present 22.711 28.781 43.594 61.981 68.029 68.872 83.646 101.959
1 Leissa [3] 24.020 40.039 63.493 76.761 80.713 116.80 —– —–

Present 24.163 40.271 63.788 76.826 81.107 117.042 123.102 134.268
1.5 Leissa [3] 26.731 65.916 66.219 106.80 125.40 152.48 —– —–

Present 28.895 68.876 69.061 112.594 128.674 154.391 173.736 197.084
2 Present 36.511 77.293 109.748 136.933 158.501 216.167 222.339 263.162

2.5 Leissa [3] 37.656 76.407 135.15 152.47 193.01 213.74 —– —–
Present 46.967 89.122 148.365 162.144 217.634 227.352 286.430 325.673

4 Present 93.507 147.186 207.431 283.868 379.180 386.142 467.619 509.119

In tables (12–19), the numerical results of frequency parameters corresponding to the first eight
modes (a–h) of vibration of square plate with different a/h has been reported. In these tables, it is
evident that the frequency parameters for each case increase gradually as the λ2 ratio decreases from 100
to 5. It can also be seen that λ2 is more effective in higher modes with respect to first modes of vibration.
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Table 12 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ2 for a simply supported

(SSSS)

λ2 References
Mode sequence number of case a

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

100 Dawe [22] 19.731 49.303 49.303 78.840 98.514 98.514 —— ——
Leissa [3] 19.739 49.348 49.348 78.957 98.696 98.696 128.305 128.305
Present 19.732 49.303 49.303 78.841 98.516 98.516 128.000 128.000

10 Liu [23] 19.058 45.448 45.448 69.717 84.926 84.926 106.515 106.515
Present 19.058 45.448 45.448 69.717 84.927 84.927 106.516 106.516

5 Liew et al. [21] 17.448 38.152 38.152 55.150 65.145 65.145 —— ——
Liu [23] 17.429 38.073 38.073 55.002 64.951 64.951 78.434 78.434
Present 17.429 38.073 38.073 55.002 64.952 64.952 78.434 78.434

Table 13 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ2 for a clamped (CCCC)

λ2 References
Mode sequence number of case b

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

100 Liew et al. [21] 35.99 73.40 73.40 108.2 131.6 132.2 165.0 165.0
Liu [23] 35.937 73.232 73.232 107.889 131.119 131.752 164.300 164.300
Present 35.942 73.237 73.237 107.888 131.125 131.756 164.291 164.291

10 Liu [23] 32.489 61.937 61.937 86.778 102.207 103.185 123.595 123.595
Present 32.489 61.937 61.937 86.777 102.207 103.185 123.595 123.595

5 Liu [23] 26.453 46.135 46.135 61.930 70.549 71.521 83.697 83.697
Present 26.453 46.135 46.135 61.930 70.549 71.521 83.697 83.697

Table 14 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ2 for one edge clamped

and the other edges simply supported (SCSS)

λ2 References
Mode sequence number of case c

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

100 Liew et al. [21] 23.65 51.67 58.65 86.13 100.3 113.2 133.8 140.9
Liu [23] 23.632 51.619 58.565 85.972 100.075 112.943 133.427 140.419
Present 23.632 51.619 58.565 85.972 100.077 112.942 133.429 140.418

10 Liu [23] 22.376 47.063 52.090 74.004 85.759 93.064 109.072 112.527
Present 22.376 47.063 52.090 74.004 85.760 93.066 109.073 112.527

5 Liu [23] 19.671 38.860 41.334 56.667 65.248 67.699 79.210 80.160
Present 19.671 38.860 41.334 56.667 65.248 67.700 79.210 80.160
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Table 15 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ2 for one edge simply

supported and the other edges clamped (CSCC)

λ2 References
Mode sequence number of case d

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

100 Present 31.793 63.225 70.933 100.523 116.041 129.915 151.335 158.839
10 29.103 55.262 60.361 82.519 94.707 101.869 117.646 121.014
5 24.146 43.009 45.230 60.129 68.359 70.666 81.884 82.761

Table 16 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ2 for one pair of opposite

sides which are clamped and the other opposite sides which are simply supported in the considered (SCSC)

λ2 References
Mode sequence number of case e

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

100 Liu [23] 28.922 54.666 69.193 94.359 101.994 128.674 139.765 154.199
Present 28.924 54.671 69.193 94.359 102.004 128.672 139.765 154.191

10 Liu [23] 32.489 61.937 61.937 86.778 102.207 103.185 123.595 123.595
Present 26.645 49.062 59.118 78.683 86.721 101.152 111.848 118.657

5 Liu [23] 22.308 39.756 44.467 58.357 65.567 70.285 80.006 81.840
Present 22.308 39.756 44.467 58.357 65.568 70.284 80.006 81.840

Table 17 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ2 for two attached

clamped edges and two attached simply supported edges in the analyzed ( CSSC)

λ2 References
Mode sequence number of case f

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

100 Leissa [3] 27.056 60.544 60.791 92.865 114.57 114.72 —— ——
C.H.W. Ng [24] 27.055 60.543 60.791 92.849 114.572 114.719 145.811 146.109
Present 27.033 60.447 60.696 92.630 114.257 114.406 145.295 145.599

10 25.265 53.328 53.667 78.054 93.710 93.948 114.747 115.202
5 21.694 41.917 42.299 58.380 67.905 68.154 80.852 81.171

Table 18 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ2 for one edge free and

the other edges simply supported (SSSF)

λ2 References
Mode sequence number of case g

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

100 Leissa [3] 11.684 27.756 41.197 59.065 61.861 90.294 94.484 108.918
Eftekhari [17] 11.684 27.756 41.197 59.065 61.861 90.294 94.484 108.918
Present 11.682 27.745 41.168 59.008 61.800 90.152 94.337 108.714

10 11.488 26.706 38.656 54.196 56.711 79.147 83.017 93.502
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Table 19 Convergence of frequency parameters Ω = ω
(
IAa

4/Cxx

)1/2
with increasing λ2 for one edge free and

the other edges clamped (CCCF)

λ2 References
Mode sequence number of case h

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

100 Leissa [3] 24.020 40.039 63.493 76.761 80.713 116.80 —– —–
Present 23.918 39.994 63.185 76.649 80.516 116.514 122.064 134.175

10 24.056 39.024 59.747 70.445 74.533 102.929 107.377 114.721

Figs. (5–13) show the variation of the first natural frequency versus n volume fraction index of FG plates
for eight different boundary conditions. It can be seen how ω1 changes with n and λ1.

Figure 5 Effect of volume fraction index of FG plate on First natural frequency ω1 of case a for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100

Figure 6 Effect of volume fraction index of FG plate on First natural frequency ω1 of case b for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100
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Figure 7 Effect of volume fraction index of FG plate on First natural frequency ω1 of case c for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100

Figure 8 Effect of volume fraction index of FG plate on First natural frequency ω1 of case d for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100

Figure 9 Effect of volume fraction index of FG plate on First natural frequency ω1 of case e for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100
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Figure 10 Effect of volume fraction index of FG plate on First natural frequency ω1 of case f for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100

Figure 11 Effect of volume fraction index of FG plate on First natural frequency ω1 of case f for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100

Figure 12 Effect of volume fraction index of FG plate on First natural frequency ω1 of case g for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100
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Figure 13 Effect of volume fraction index of FG plate on First natural frequency ω1 of case h for
λ1 = 0.4, 1, 2, 2.5, 4 and λ2 = 100

Figure 14 Effect of volume fraction index and different boundary conditions on First natural frequency ω1 for
λ1 = 1 and λ2 = 100

Fig. ( 14) shows effect of volume fraction index on natural frequency at different boundary conditions.
Natural frequency is maximized when all edges are clamped and it is minimized at SSSF boundary
condition for any volume fraction index.

7 Conclusions

In the present paper, free vibration analysis of functionally graded rectangular plate via two dimensional
DQ method has been presented on the basis of Mindlin plate theory and for different types of boundary
conditions. It is concluded that:

1. The choose of appropriate number of grid points in convergence of DQM depends on boundary con-
dions of plate.
2. The natural frequencies of plate increase in any boundary conditions when volume fraction index
increases.
3. maximum and minimum of first natural frequency of the plate are related to CCCC and SSSF bound-
ary edges respectively.
4. First natural frequency at SCSS case is so closed to CCCF case. It seems that when λ1 increases the
effect of volume fraction index is more.
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5. In square plate, Natural frequency at SCSC case is more than it in SCCS case. It seems that stiffness
of plate at SCSC boundary condition is more than it at SCCS.
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A Appendix

Figure A.1 The geometry of mash plate

[
Bk

Dk

]{
~X
}

= Ω2
[
Ī
] {

~X
}

(A1)

The vector
{
~X
}

, appeared in Eq. (A1), denotes the translational and rotational displacements of an
imaging coordinate frame attached to the grid points. It is composed of the vectors dB and dD as equce-
tion.

The matrix
[
Ī
]

is a quasi-identity matrix equal to

[
0 0

0 I

]
appeared in Eq. (A1).

Bk andDk in the equation represent the weighting coefficients of the components of
{
~X
}

in the kth

boundary condition and in the kth domain equation respectively ,for constructing according to differential
quadrature technique.
The equation (A1) might be rewritten as equation (A2).[

BB BD
DB DD

]{
dB

dD

}
= Ω2

[
Ī
]{ dB

dD

}
(A2)

In Eq. (A2) BD, DB are created due to the fact that the domain and boundary equations are coupled
with each other.
These matrices BB and DD come into existence after assembling of the difference equations of the
domain and boundary of the plate. The grid points of the domain and the boundary have been illustrated
in Figure A.1.

dB =
[
XB

1 . . . XB
2(N+M)−4

]T (A3)

dD =
[
XD

1 . . . XD
(N−2)(M−2)

]T (A4)

XB
i and XD

i ≡
[
Θxi Θyi Wi

]T (A5){
~X
}

=
[
dB dD

]T
=
[
XB

1 . . . XB
2(N+M)−4 |X

D
1 . . . XD

(N−2)(M−2)
]T (A6)


