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1   Introduction  

 

Application of piezoelectric materials in advanced structures to create in them some kinds of 

adaptive or “smart” characters has developed over the past few decades. The piezoelectric 

materials can be used as sensors/actuators in the structural vibration control systems, for 

measuring the strain and/or exerting the actuation forces on the structure. From structural 

viewpoint, vibration analysis of piezoelectric coupled circular/annular plates as a structural 

element in different structural systems, including civil, mechanical, space and marine structures 

as well as electronic components, has been the subject of many research works. Analytical 

solution was presented by Wang et al. [1] for vibration analysis of a circular plate surface 

bonded by two piezoelectric layers, based on the classical plate theory (CPT). Liu et al. [2] 

proposed an analytical model for free vibration analysis of piezoelectric coupled moderately 

thick circular plate based on the first-order shear deformation plate theory (FSDT). In their 

study, a sinusoidal function is adopted to describe the distribution of electric potential along the 

thickness direction of the piezo patches. By implementing both CPT and FSDT plate theories, 

analytical solutions were presented by Duan et al. [3] for the free vibrations of piezoelectric 

coupled annular plate.  
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Free Vibration Analysis of Thin Annular 

Plates Integrated with Piezoelectric Layers 

using Differential Quadrature Method 
In this article, using generalized differential quadrature 

(GDQ) methods, free vibration of a thin annular plate 

coupled with two open circuit piezoelectric layers, is 

numerically studied based on the classical plate theory. The 

governing differential equations with respective boundary 

conditions are derived and transformed into a set of 

algebraic equations by implementing the GDQ rule, then 

solved as an eigenvalue problem to obtain the natural 

frequencies and mode shapes of the plate. Convergence of 

the solutions obtained for the natural frequencies is studied. 

Also, the present numerical model validated by comparing 

its numerical results with those reported in literature. 

Finally, parametric studies are carried out and the effects 

of a number of important parameters on the natural 

frequencies are investigated. 
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They concluded that Mindlin model provides better solutions than those from Kirchhoff model 

and the error percent of the results is larger for higher resonant frequencies. Wu et. al. [4] 

investigated vibration behavior of a circular steel substrate surface bonded by a piezoelectric 

layer with open circuit. In their study, a solution for the electrical potential across piezoelectric 

layers’ thickness was developed for the first time to satisfy the open circuit electrical boundary 

conditions. Hosseini-Hashemi et al. [5-6] exhibited an exact solution for free vibration analysis 

of circular/annular moderately thick plates integrated with piezoelectric layers on the basis of 

the Levinson plate theory (LPT) and third-order shear deformation plate theory (TSDT). Some 

research works are also devoted to the vibration analysis of piezoelectric coupled 

circular/annular plates made of functionally graded materials Ebrahimi F and Rastgoo [7]; 

Hosseini Hashemi et al. [8]; Jafari Mehrabadi et al. [9]; Jodaei et al. [10]. 

 

In all the previously mentioned research works analytical solutions are developed for 

vibration characteristics of the circular/annular plates integrated with piezoelectric layers. 

Although analytical methods present closed-form solutions, they are limited to simple 

geometries, specific types of boundary conditions and special loading cases. Differential 

quadrature method (DQM) is a robust numerical approach which was firstly introduced by 

Bellman and Casti [11], was applied by Bert et al. [12] for the first time to study dynamic 

behaviors of structures. There were some limitations in applications of DQ method. For 

example, the early method for computing the weighting coefficients which was improved by 

Quan and Chang [13] and, Shu and Richards [14]  resulted in ill-conditioned matrices when a 

large number of grid points are used. Other restrictions, which have limited the application 

range of the conventional DQ method include restrictions for implementation of multiple 

boundary conditions when the DQ method is used to solve fourth-order differential equations, 

discontinuities in geometry and loading, complex structures such as stepped beams under 

general loadings, and frame structures which led to the introduction of various methods such as 

d-technique (Bert et al. [15]; Wang and Bert [16]), equation replaced approach (Shu and Du 

[17]), quadrature element method (QEM) (Chen [18]; Stritz et al. [19]) and differential 

quadrature element method (DQEM) (Karami and Malekzadeh [20]; Wang [21]). 

 

In this paper, a numerical solution for free vibration analysis of open circuit piezoelectric 

coupled   is presented by using a combination of differential quadrature (DQ) and generalized 

differential quadrature (GDQ) methods. The governing differential equations derived according 

to the Kirchhoff plate theory, and Maxwell equation together with an assumed electric potential 

function which satisfies the open circuit electrical boundary conditions. These equations are 

discretized through quadrature rule to convert them as a set of algebraic eigenvalue equations, 

that can be solved for a number of first natural frequencies and vibration mode shapes of the 

annular plate. Validation and accuracy of the present DQ solution method are illustrated via 

comparing its numerical results with those of analytical solutions available in the literature. It 

is worth noting that, the analytical solutions are confined to some simple or special kinds of 

boundary conditions, while the present GDQ numerical scheme can be applicable for any kind 

of plate edge supporting. Applying the GDQ model, parametric studies are conducted to show 

the influence of various geometrical and material quantities as well as mechanical boundary 

conditions on the natural frequencies of the piezoelectric coupled annular plates. 
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Figure 1 Geometry of a piezoelectric coupled thin annular plate. 

 

 

 

2   Mathematical formulation 

 

2.1 Kinematics and constitutive relations 

 

A flat thin piezoelectric coupled annular plate is depicted in Figure (1). The assembly includes 

a host layer in the middle and two piezoelectric layers which are perfectly bonded to the upper 

and lower surfaces of the host layer. The inner radius, outer radius, host plate thickness and 

piezoelectric  layer  thickness  are  defined  by a , b , 2h  and ph , respectively. The top and 

bottom surfaces of the piezoelectric layers are fully covered by a very tiny electrode material 

with negligible mechanical effects. The piezoelectric patches are polarized along their thickness 

direction. In order to extract mathematical formulations, an orthogonal cylindrical coordinate 

system ( , ,r zq ) is used with its origin at the mid-surface and its z axis coincided with the plate 

axis of symmetry.  For the sake of  convenience, superscripts  ‘h’  and  ‘p’  are 
 
applied in the 

formulation to represent the parameters of the host and piezoelectric layers, respectively. 

According to CPT, the displacement field can be given by [1]: 

 ( , , )zu w r tq=  (1a) 

 ( , , )
r

w r t
u z

r

qµ
=-

µ
 (1b) 

 ( , , )w r t
u z

r
q

q

q

µ
=-

µ
 (1c) 

where, zu , ru and uq are the displacements in transverse, z, radial, r, and tangential, q, 

directions, respectively. Also in Eq. (1), t represents the past time. Using the displacement field 

given by Eq. (1) along with small deformation assumption, the following equalities are derived 

for the strain componentsrre , qqe  and rqe [1]: 
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 (2c) 

According to Hook’s law, the stress components in the host plate can be expressed as 

 2 2
( )

2 2 2 2 2
( )

(1 ) (1 )

h

rr rr

E Ez w w w

r r r r
qqs e ue u

u u q

è øå õµ µ µ
= + =- + +é ùæ ö
- - µ µ µç ÷ê ú

 (3a) 

 2 2
( )

2 2 2 2 2
( )

(1 ) (1 )

h

rr

E Ez w w w

r r r r
qq qqs e ue u

u u q

è øµ µ µ
= + =- + +é ù- - µ µ µê ú

 (3b) 

 2
( )

2(1 ) (1 )

h

r r

E Ez w w

r r r
q qt e

u u q q

è øµ µ
= =- -é ù+ + µ µ µê ú

 (3c) 

in which, u and Eare Poisson’s ratio and Young’s modulus of the host plate, respectively. In 

the piezoelectric layer, the constitutive relations can be written as [1] 

 (p)

11 12 31

E E

rr rr zC C e Eqqs e e= + -  (4a) 

 (p)

12 11 31

E E

rr zC C e Eqq qqs e e= + -  (4b) 

 (p)

11 12( )E E

r rC Cq qt e= -  (4c) 

where, 
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13
11 11

33

( )E
E E

E

C
C C

C
= -  (5a) 
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13
12 12

33

( )E
E E

E

C
C C

C
= -  (5b) 

 
13 33

31 31

33

E

E

C e
e e

C
= -  (5c) 

in those, 11

pC , 12

pC , 13

pC  and 33

pC  are the moduli of elasticity under constant electric field, and 

31e , 33e are the piezoelectric constants. Also, rE , Eq, and zE  are the electric field intensities 

in the radial, tangential and transverse directions respectively, which can be obtained by the 

derivatives of the electric potential field, ʟ, as below [1] 

 
rE

r

fµ
=-
µ

 (6a) 

 

  
E

r
q

f

q

µ
=-
µ

 (6b) 

 
zE

z

fµ
=-
µ

 (6c) 

and, their corresponding electric displacements rD , Dq and zD  are derived by [1]: 

 
11r rD E=X  (7a) 

 
11D Eq q=X  (7b) 
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31 33( )z rr zD e Eqqe e= + +X (7c) 

where, 

 2

33
33 33

33

E

e

C
X =X +  (8) 

in that, 11X and 33X  are the dielectric constants of the piezoelectric layer.  

 

2.2   Electric potential distribution in piezoelectric layers 

 

For the open circuit piezoelectric layer, an electric potential function proposed by Wu et. al. 

[4], which satisfies the open circuit electrical boundary condition, is used herein which can be 

defined by: 

 2
2 ( )

1 ( , , ) , p

z H h
r t Az B H h h

H h
f j q
ë û- +î îè ø
= - + + = +ì üé ù-ê úî îí ý

 (9) 

where, A and B are two parameter as functions of r , q and z which can be determined by 

applying the electrical boundary condition for open circuit piezoelectric layer, and ( , , )r tj q is 

the electric potential on the mid-surface of the piezoelectric layer. Since each piezoelectric 

patch is surface bonded on one side of the metal host plate, the electric potential on their 

interface is null, so, 

 ( ) 0z hf = = (10) 

and, the electric displacement at the free surfaces of piezoelectric patches almost vanish as the 

surfaces are completely isolated [4], that is, 

  ( ) 0zD z H= = (11) 

Applying the boundary conditions given by Eq. (10) and Eq. (11), the functions A and B can 

be obtained as follows: 

 
31

33

4

p

HeB
A w

h h
j=- = - D
X

 
(12) 

where , D is the Laplace operator in polar coordinate system and is given by 

 2 2

2 2 2r r r r q

µ µ µ
D= + +
µ µ µ

 (13) 

Thus, the electric potential function can be written as 

 
31

2

33

4( )( 2 )
( )

( )

ez h z H h
H z h w

H h
f j

- - +
=- - - D

- X
 (14) 

Eq. (14) gives the electric distribution function along the thickness direction of the open 

circuit piezoelectric layer. Substituting Eq. (14) into Eq. (6), yields three components of the 

electric field   

 
31

2

33

( )( 2 ) ( )
4 H( )

( )
r

ez h z H h w
E z h

H h r r

j- - + µ µ D
= + -

- µ X µ
 (15a) 

 
31

2

33

( )( 2 ) ( )
4 H( )

( )

ez h z H h w
E z h

H h r r
q

j

q q

- - + µ µ D
= + -

- µ X µ
 (15b) 

 
31

2

33

8 H
( )

z

ez H
E w

H h
j

-
= + D

- X
 (15c) 

and, the corresponding electric displacements are derived as the following: 
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11 31
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 (16a) 
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H h r r
q
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q q

X- - + µ µ D
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 (16b) 

 
33 312

8 ( )
( )

z

z H
D e z H w

H h
j

-
= X - - D

-
 (16c) 

Also, the stress components in a piezoelectric layer given by Eq. (4) can be rewritten as: 

 2 22 2
( ) 31 31

11 12 312 2 2 2

33 33

8
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(17a) 
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(17b)
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 2
( )

11 12 2
( )p E E

r

w w
C C z

r r r
qt

q q

å õµ µ
=- - -æ ö

µ µ µç ÷
 (17c) 

 

2.3  Motion and Maxwell equations with respective B.C.ôs 

 

The expression for bending moments  rrM , Mqq and twisting moment rM q are 

 
( ) ( )2

H h H

h p

rr rr rr rr

H h h

M z dz z dz z dzs s s
- -

= = +ñ ñ ñ (18a) 

 
( ) ( )2

H h H

h p

H h h

M z dz z dz z dzqq qq qq qqs s s
- -

= = +ñ ñ ñ (18b) 

 
( ) ( )2

H h H

h p

r r r r

H h h

M z dz z dz z dzq q q qt t t
- -

= = +ñ ñ ñ (18c) 

Substituting Eqs. (3) and Eqs. (17) into the Eqs. (18), leads to the following expressions for the 

resultant moments 

 2 2

1 2 32 2 2rr

w w w
M A A A

r r r r
j

q

å õµ µ µ
= + + +æ ö
µ µ µç ÷

 (19a) 

 2 2
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µ µ µç ÷
 (19b) 
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where, 

 2 2 23 33

3111
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3 31

8
( 2 ) e

3
A H h= +  (20c) 

The resultant shearing forces rq and qq can be obtained by [4]: 

 
r rrrr

r

M M MM
q

r r r

q qq

q

µ -µ
= + +
µ µ

 (21a) 

 2r rM M M
q

r r r

q qq q
q

q

µ µ
= + +
µ µ

 (21b) 

Also, by substituting Eqs. (19) into Eqs. (21), the following expressions for the shearing forces 

are derived  

 
1 3( w)rq A A

r r

jµ µ
= D +
µ µ

 (22a) 

 
1 3( w)q A A
r r

q

j

q q

µ µ
= D +

µ µ
 (22b) 

Now, according to the Kirchhoff plate model, the equation of motion along z axis expressed 

for an element of the laminated plate in cylindrical coordinate, is given by [4] 

 2 2
( ) ( )

2 2
2

h H

h pr r

h h

qq q w w
dz dz

r r r t t

q r r
q

-

µµ µ µ
+ + = +

µ µ µ µñ ñ  (23) 

where, 
hr and 

pr are the density of the host plate and the piezoelectric layers, respectively. 

Substitution of Eqs. (22) into Eq. (23), yields the governing equation of vibrations for the smart 

laminated plate based on the CPT 

 2

1 3 2
0

w
A w A

t
j r

µ
DD + D + =

µ
 (24) 

where, 

 ( ) ( )2 ( )h ph H hr r rè ø= + -ê ú (25) 

The Maxwell equation, integrated over the piezoelectric layer thickness, say the lower one, may 

be expressed as below [3] 

 ( )
0

H

r z

h

DrD D
dz

r r r z

q

q

µµ µè ø
+ + =é ùµ µ µê ú

ñ  (26) 

 

This states that integration over the thickness from the divergence of the electric flux vanishes. 

Now, by substituting from Eq. (16) into Eq. (26), we reach to the following PDE 

 

 
1 2 3 4 0B w B B w Bj jDD + D + D + = (27) 

in that, 

 
31 11

1

33

( ) e

2

H H h
B

- X
=

X
 (28a) 

 
11

2

8( )

3

H h
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- X
=-  (28b) 

 
3 31( ) eB H h=- -  (28c) 

 
33
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8
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For a thin annular plate, the expressions for clamped and simply-supported boundary 

conditions, which may be applied on the inner and/or outer edge of the annular plate, are given 

as follows 

At a clamped edge: 

 
0, 0

w
w

r

µ
= =

µ
 (29) 

At a simply-supported edge: 

 0, 0rrw M= = (30) 

If the plate is insulated at the edge, the electrical flux conservation equation is given by [3], 

 (r, , t)dz 0

H

r

h

D q =ñ  (31) 

Substituting from Eq. (16a) into the above equation, the electric boundary condition is obtained 

as: 

 
0

r

jµ
=

µ
 (32) 

The solutions for ( , , t)w r q and ( , , )r tj q can be considered as below [3]: 

 ( )( , , ) ( ) i p tw r t W r e q wq -=  (33) 

 ( )( , , ) ( ) i p tr t r e q wj q -=Y  (34) 

   
where, ( )W r and ( )rY  are the amplitude of the displacement and electric potential in the plate 

thickness direction as  functions of only the r coordinate, w is the natural frequency of 

vibrations, andp is the wave number in q direction. Now, substitution of Eqs. (33) and (34) 

into Eqs. (24) and (27), yields 

 2

1 3A W A WrwDD + DY=  (35) 

 
1 2 3 4 0B W B B W BDD + DY+ D + Y= (36) 

where,  

 2 2

2 2

1d d k

dr r dr r
D= + - (37) 

 4 3 2 2 2 4 2

4 3 2 2 3 4

2 2 1 2 1 4d d k d k d k k

dr r dr r dr r dr r

+ + -
DD= + - + +  (38) 

in thosek is the same as p, i.e. the wave number in q direction ( k p= ). Also, the mechanical 

and electrical boundary conditions can be rewritten in terms of W and Ɋ as below: 

Mechanical B.C’s. at a clamped edge: 

 

0,W=    0
dW

dr
=  (39) 

Mechanical B.C’s. at a simply-supported edge: 

 0,W=  

(40)  2 2

1 2 2 32 2

1
0

d W dW k
A A A W A

dr r dr r
+ - + Y= 

Electrical B.Cs. for piezo patches: 
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Figure 2 Four types of supporting applied on the piezoelectric coupled annular plate, CC, SS, CS and SC 

respectively. 

 

 

 
0

d

dr

Y
=  (41) 

To obtain the annular plate natural frequencies and corresponding mode shapes, two forth order 

ordinary differential equations given by Eqs. (35), (36) should be solved regarding one of the 

edge supporting conditions given by Eqs. (39)- (41) applied to the inner (r a= ) and/or outer (

r b= ) circular boundaries of the annular plate.  In the present work four different combinations 

of mechanical boundary conditions applied at the two circular edges are considered namely, 

Clamed–Clamed (CC), Simple–Simple (SS), Simple–Clamped (SC) and Clamed–Simple (CS), 

where the first and second letter denote the boundary condition at the inner and outer edge, 

respectively.  

In Figure (2) each of the four types of supporting are shown schematically.  

 

 3  Problem solution 

 

3.1 Review of differential quadrature method 

 

In differential quadrature method, an nth-order x-partial derivative of function ( )f x  at a grid 

point ix x=  may be approximated as [22]: 

 
( )

1

( )
( ), 1,2,..., , 1,2,..., 1

n N
ni

ij jn
j

d f x
A f x i N n N

dx =

= = = -ä  (42) 

where N  is the number of grid points and 
( )n

ijA  are the weighting coefficients for calculating 

the nth-order derivative at the i th sampling point. The procedure adopted for determination of 

the weighting coefficients and the quality of selection of the grid points in the solution domain, 

are two the key points in the successful application of the differential quadrature method. In 

this paper, we adopted the procedure introduced by Shu and Richards [14] which has been 

demonstrated to make more accurate computational results than the other methods. According 

to their rule, the weighting coefficients of the first-order derivatives with respect to a spatial 

variable say x, can be determined as [22] 
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(1)

(1)

1,
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( ) ( )
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i j j

ij N

ij

j i j

M x
i j

x x M x
A i j N

A i j
= ¸

ë
¸î -î

= =ì
î - =
îí
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 (43) 

where, 

 

1,i k

( ) ( )
N

i i k

k

M x x x
= ¸

= -Ô  (44) 

and, the weighting coefficients of second, third, and fourth-order derivatives, 
(2)

ijA , 
(3)

ijA and

(4)

ijA , may be computed by 

 
(2) (1) (1)

1

N

ij ik kj

k

A A A
=

=ä  (45) 

 
(3) (1) (2)

1

N

ij ik kj

k

A A A
=

=ä  (46) 

 
(4) (1) (3)

1

N

ij ik kj

k

A A A
=

=ä  (47) 

Also, in Shu and Richards procedure an unequally spaced grid point distribution so-called 

Chebyshev nodes is applied, which can be expressed in a domain ὼɴ ὥ  ὦ as [14] 

 

 1
1 cos , 1,2,...,

2 1
k

b a k
x a k N

N
p

- -è øå õ
= + - =æ öé ù-ç ÷ê ú

 (48) 

 

3.2 Generalized differential quadrature rule 

 

The essence of GDQR (generalized differential quadrature rule) and differential quadrature 

element method (DQEM) is based on applying two degrees of freedoms (DOFs) at the end 

points, namely, 1w , 
(1)

1w , Nw , 
(1)

Nw , instead of one DOF to handle the two boundary 

conditions. The weighting coefficients of the first-order derivatives in GDQR based on the 

Lagrange interpolation can be modified by [23]:  

 (1)

(1) for 1,2,..., ; 1,2,...,

0 for 1,2,..., ; 1, 2

ij

ij

A i N j N
E

i N j N N

ë = =
=ì

= = + +í
 (49) 

The weighting coefficients of the second-order derivatives for all inner grid points 

( 2,3,..., 1)i N= - can be determined by [23] 

 (2)

(2) for 2,3,..., 1, 1,2,...,

0 for 2,3,..., 1, 1, 2

ij

ij

A i N j N
E

i N j N N

ë = - =
=ì

= - = + +í
 (50) 

and at the two end points (i.e. 1,i N= ) are computed differently as follows, 

 

 1
(2) (1) (1)

2

(2) (1) (2) (1)

( 1) 1 ( 2)

for 1,2,..., ,

,

N

ij ik kj

k

i N i i N iN

E A A j N

E A E A

-

=

+ +

= =

= =

ä
 

 

(51) 
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Eq. (51) is derived regarding the fact that the second-order derivative with respect to x at the 

two end points can be computed by using the DQ rule, namely, 

 

1

1 1

1 2

1 2

1 1

2 1 1

; 1,

N N

i ik k ik i iN N

k k

N N N

ik kj j i iN N ij j

k j j

f A f A f A f A f

A A f A f A f B i Nd

-

= =

- +

= = =

¡¡ ¡ ¡ ¡ ¡= = + +

¡ ¡= + + = =

ä ä

ä ä ä
 

 

(52) 

The obvious difference between Eq. (52) and Eq. (42) rewritten for n=2, is that in the former 

the range of summation changes from 1 to N + 2. The weighting coefficients of the third- and 

fourth-order derivatives with respect to x can simply be computed by [23]  

 
(3) (1) (2)

1

; 1,2,..., , 1,2,..., 2
N

ij ik kj

k

E A E i N j N
=

= = = +ä  (53) 

 
(4) (2) (2)

1

; 1,2,..., , 1,2,..., 2
N

ij ik kj

k

E A E i N j N
=

= = = +ä  (54) 

 

3.3 Discretization of the differential equations by DQM and GDQR 

 

In this section, the two governing differential equations (35), (36) of the piezoelectric coupled 

annular plate are transformed into algebraic equations by implementing the GDQR and DQM 

respectively, along with their associated boundary conditions. This is because there are two 

mechanical B.Cs. at each boundary point, while there is only one electrical B.C. at each edge 

point.  

First, substituting from Eqs. (37) and (38) into the Eqs. (35) and (36), the two forth-order 

governing differential equations can be rewritten as the following expanded forms: 
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1 1 1 14 3 2 2 3

4 2 2 2
2
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 (56) 

 

Now, by implementing the GDQR and DQM respectively to Eq. (55) and (56), with the 

weighting coefficients 
( )n

ijA  and 
( )n

ijE  previously determined as described in sections 3.1 and 

3.2, the discrete form of the equations are obtained as 

 2 22
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(57) 
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(58) 

The discretized form of the boundary condition, e.g. for an annular plate having SC edge 

supporting, can be considered as 

 22
(2) (1)2 2

1 1 1 1 1 3 12
1

0
N

j j j

j

A k A
W A E E W W A

a a

+

=

è ø
= + - + Y =é ùê ú
ä  (59a) 

 (1) 0N NW W= = (59b) 

Also, the electrical boundary condition given in Eq. (41) can be discretized as  

 
(1) (1)

1

1 1

0
N N

j j Nj j

j j

A A
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Y = Y =ä ä  (60) 

Assembling the discrete forms of the governing equations given in Eqs. (57)-(58), then applying 

the discretized boundary equations (59), (60), yields a set of (2 2) (2 2)N N+ ³ + algebraic 

equations which can be written in the matrix form as an eigenvalue problem given by 

 [] [ ]( )[]2 0K M Xw- = (61) 

where, [ ]K  and [ ]M  are the stiffness and mass matrices, respectively, and [ ]X
 
is the eigen 

vector or the vector of node point variables defined as 
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 (62) 

By solving the eigenvalue equation, Eq. (61), the natural frequencies and mode shapes of the 

plate lateral vibrations can be determined. 

 

4  Results and discussions 

 

A computer code in MATLAB is developed to solve the eigenvalue equation given by Eq. (61). 

In these computations the material and geometrical properties are as listed in Table (1), unless 

otherwise specified. For convenience, the notation ɤpn is used to represent a natural frequency 

corresponding to the mode number (p, n), in that p and n denote the number of nodal diameters 

and nodal circles respectively. It should be mentioned that the number of nodal diameters and 

nodal circles are defined as the number of zeros in the ɗ-direction and in the r-direction 

respectively which are counted in their whole domains [3].  
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Table 1 Material and geometrical properties of the host and piezoelectric layers [3]. 

 

Property  Host layer (Steel)  Piezoelectric layer (PZT4) 

Young’s moduli (N/m2)  9200 10E = ³   
9

11 132 10EC = ³  

    -  
9

12 71 10EC = ³  

    -  
9

13 73 10EC = ³  

    -  
9

33 115 10EC = ³  

    -   

Mass density (kg/m3)  
37.8 10hr = ³   

37.5 10pr = ³  

31e (C/m2)  -  -4.1 

33e (C/m2)  -  14.1 

11X (F/m)  -  97.124 10-³  

33X (F/m)  -  95.841 10-³  

a    (m)  0.1  0.1 

b    (m)  0.6  0.6 

h    (m)   0.01  - 

ph (m)  -  0.001 

 

 

4.1 Convergence and comparative studies 

 

In this section, the convergence of the present numerical solution is investigated with increasing 

the number of node points for a set of mode shapes corresponding to 0,1,2p=  and 0,1,2n= , 

computed for two different types of the edge supporting conditions CC and SS. Figure (3) shows 

the convergence patterns of the plate natural frequencies for all combinations of these mode 

numbers and supporting conditions.   

Regarding these diagrams, it is found that:     

● Irrespective  to  the  plate supporting  type,  the natural  frequencies of  the sandwich plate  

converge to a stable value as the number of grid points increases. It can be observed that 

considering a number of grid points N=27, often makes sufficiently accurate results for the 

natural frequencies ɤpn with n and p up to 2.  

● For various mode numbers (p, n), different convergence rates may be observed. However, 

the convergence rate for the modes of the smallest number of nodal diameters (i.e. 0p= ) is 

faster than those of 1,2p= .   

● For all of the mode numbers, the plate boundary conditions play an important role in the 

convergence rate of the GDQM. It may be seen that the convergence rate for the plate of SS 

supporting type is faster than that of the plate of CC supporting type. 

In order to verify the accuracy and capability of the present GDQM, natural frequencies of 

a piezoelectric coupled annular plates of  various  boundary conditions including CC,  SS,  SC  

and CS,  have  been  obtained  for  three  different  values of nodal circles  (0,1,2n= )  and  

nodal diameters ( 0,1,2p= ). The numerical data have been achieved by 35N =  grid points 

and are tabulated in Table (2).  
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(a) 
(e) 

 

  

(b) 
(f) 

 

  
(c) (g) 

 
Figure 3 Convergence of the first three natural frequencies ( 0,1,2n = ) of the piezoelectric coupled annular plate 

versus the number of grid points, a) CC, 0p= ; b) CC, 1p=  c) CC, 2p= ; e) SS, 0p= ; f) SS, 1p= ; g) SS, 

2p=
 

 

 

In this table the results of the exact solutions performed by Duan et al. [3] and those from 3D 

FE analyses by ABAQUS 6.3 [3] are also included for comparison. According to the tabulated 

results, it may clearly be seen that the numerical results of the present GDQM are very close to 

those of the exact and the FEM solutions reported in the reference (Duan et al. [3]). Therefore, 

it can be concluded that the present GDQM provides an accurate and reliable numerical solution 

formulation. Furthermore, by comparing the percentage differences given in Table (2), it is 

observed that at the higher modes of vibration (modes with greater nodal circles) the difference 

is more significant. Corresponding to the tabulated natural frequencies, the vibration mode 

shapes of the annular plates are shown in Figure (4) just for CC and SS types of boundary 

conditions. 
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Table 2 Comparison of natural frequencies (rad/s) of piezoelectric coupled annular plates with different boundary 

conditions for h/a=.1. 

 

Boundary Condition p  n  
                Present 

                GDQM 
 

Exact 
(Duan   et 

al. [3] ) 
 Diff. %  

FEM 
(Duan et 

al. [3] ) 
 Diff. % 

CC 0 0 2797.48  2815  0.62  2812  0.52 

   1 7725.01  7786  0.78  7659  -0.86 

   2 15192.16  15306  0.74  14753  -2.98 

  1 0 2934.31  2952  0.60  2942  0.26 

   1 7967.12  8030  0.78  7882  -1.08 

   2 15492.16  15608  0.74  15020  -3.14 

  2 0 3483.88  3506  0.63  3471  -0.37 

   1 8772.34  8840  0.77  8635  -1.59 

   2 16445.89  16569  0.74  15877  -3.58 

             

SS 0 0                 

1386.84 
 1396  0.66  1395  0.58 

   1 5159.67  5198  0.74  5173  0.26 

   2 11394.39  11489  0.82  11283  -0.99 

  1 0 1604.06  1613  0.55  1593  -0.69 

   1 5522.76  5558  0.63  5490  -0.60 

   2 11821.95  11918  0.81  11647  -1.50 

  2 0 2341.76  2355  0.56  2312  -1.29 

   1 6613.92  6669  0.82  6521  -1.42 

   2 13150.19  13225  0.57  12798  -2.75 

             

CS 0 0 1832.22  1843  0.58  1848  0.85 

   1 6190.89  6220  0.47  6164  -0.44 

   2 13013.64  13111  0.74  12770  -1.91 

  1 0 1971.77  1983  0.57  1981  0.47 

   1 6428.74  6459  0.47  6384  -0.70 

   2 13311.91  13411  0.74  13038  -2.10 

  2 0 2518.77  2535  0.64  2511  -0.31 

   1 7206.40  7259  0.72  7134  -1.01 

   2 14262.50  14367  0.73  13903  -2.59 

             

SC 0 0 2197.97  2216  0.81  2213  0.68 

   1 6552.76  6615  0.94  6544  -0.13 

   2 13420.94  13531  0.81  13169  -1.91 

  1 0 2428.72  2446  0.71  2418  -0.44 

   1 6919.57  6983  0.91  6865  -0.79 

   2 13848.46  13961  0.81  13528  -2.37 

  2 0 3216.69  3236  0.60  3178  -1.22 

   1 8051.14  8119  0.84  7902  -1.89 

   2 15154.08  15274  0.79  14663  -3.35 

 

 

4.2 Parametric studies  

 

In the previous subsection the convergence and accuracy of the developed generalized 

differential quadrature formulation has been investigated and verified. In this subsection, by 

implementing the present GDQM, the effects of a number of geometrical and material 

parameters as well as mechanical boundary conditions on the natural frequencies of the 

piezoelectric coupled annular plates are examined. All the numerical data presented hereafter 

have been achieved by N=35 grid points.  
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 Boundary 

Conditions 

 0n=  1n=  2n=  
p     

CC 0 

   

  1 

   

  2 

   
      

SS 0 

   

  1 

   

  2 

   
 

Figure 4 Lateral vibration mode shapes of the piezoelectric coupled annular plates with CC and SS Boundary 

conditions for h/a=0.1. 

 

    In Figures (5), (6) effect of the outer/inner radius ratio (b/a) on the natural frequency is 

investigated. The variations of the first three natural frequencies ω00, ω01, ω02 of the 

piezoelectric coupled annular plate as functions of the outer/inner radius ratio (b/a) have been 

depicted  in  Figures (5), (6) respectively  for  CC  and  SC  edge conditions.  The outer radius, 

b, is varied from 0.2 to 1m in steps of 0.1 m, while the inner radius is maintained constant value 

a=0.1 m.  

It may be found that by increasing b/a, all the natural frequencies in the logarithmic scale are 

decreased almost with the same attitude. 

Figure (7) shows three first natural frequencies ω00, ω01, ω02 of the SS smart annular plate versus 

the host plate thickness to inner radius ratio (/h a). The host plate thickness takes the values 
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5,6,7,8,9,10h=  mm while the inner radius is maintained a constant value a=0.1 m, and the 

thickness of the piezoelectric layers is assumed to be 10% of the host plate thickness. As may 

be observed in Figure (7), the natural frequencies, expressed in the logarithmic scale, increase 

smoothly as /h a takes larger values. Figure (8) depicts the variation in the natural frequencies 

of the CC smart annular plate versus the piezoelectric to host thickness ratio (/ hph ) for 

0,1,2n=  and nodal diameter number 1p= . The host plate thickness is assumed to be of 

constant value 0.01mh= , while the thickness of the piezoelectric layers varies from 0.0005 to 

0.004 m in steps of 0.0005 m.  

 

 
Figure 5 Variation of the first three natural frequencies of the piezoelectric coupled annular plate versus the 

outer/inner radius ratio, b/a, (CC, h/a=0.1, 0.1ma= , 0,1,2n = , 0p= ) 

 

 
Figure 6 Variation of the first three natural frequencies of the piezoelectric coupled annular plate versus the 

outer/inner radius ratio, b/a, (SC, h/a=0.1, 0.1ma= , 0,1,2n = , 0p= ) 
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Figure 7 Variation of the first three natural frequencies of the piezoelectric coupled annular plate versus the host 

plate thickness to inner radius ratio, h/a, (SS, b/a=6, 0.1ma= , 0,1,2n = , 1p= ) 

 
Figure 8 Variation of the first three natural frequencies of the piezoelectric coupled annular plate with the 

piezoelectric to host thickness ratio (CC, h/a=0.1, h=0.01 m, 0,1,2n = , 1p= ) 

 

From this figure which illustrates the effect of the piezoelectric patches, it can be realized that 

the natural frequencies in the logarithmic scale rise almost linearly as the piezoelectric to host 

thickness ratio ( /ph h) increases. 

In Figure (9) the annular plate natural frequency ωp0 is plotted versus the nodal diameter 

number, p, for 4 different types of boundary conditions. It may be observed that higher 

restraining boundary conditions such as CC and SC, cause larger natural frequencies in the 

plate. However, the increasing effect of the supporting type on the amount of the natural 

frequency diminishes for higher nodal diameter numbers. Comparison  between the  curves  of  
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Figure 9 Natural frequency ωp0 of the piezoelectric coupled annular plate versus nodal diameter number, p, for 

various boundary conditions (b/a=6, h/a=0.1). 

 

 
Figure 10 Variation of the first three natural frequencies of the piezoelectric coupled annular plate with the host 

to piezoelectric modulus ratio, E*, (CC, b/a=6, h/a=0.1. 2p= , 0,1,2n = ). 

 

CS and SC shows that the frequencies of SC are greater than those of CS, which may be 

explained by the fact that clamping the outer edge causes more rise in the plate stiffness than 

doing the inner edge.  

Denoting the ratio of the host plate modulus to piezoelectric modulus as E*, the variation of 

three  natural  frequencies  ω20,  ω21,  ω22  of the  CC  smart  annular  plate  with  E*  has been 

illustrated in Figure (10) (
*

110.1 / 3EE E C Gpa¢ = ¢).  For this purpose, while all other parameters 

are kept fixed, the host plate modulus varied in the range 10 < E < 400 GPa.  
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Figure 11 Variation of the first three natural frequencies ( 0,1,2n = ) of the piezoelectric coupled annular plate 

versus the host plate to piezoelectric density ratio, ɟ*, (SS, b/a=6, h/a=0.1. 2p= ). 

 

It can be inferred from this figure that as *E  takes larger values, the natural frequencies 

increase. Figure (11) provides information about the change in the first three natural frequencies 

of the  SS  smart  annular  plate  as the host plate to piezoelectric density ratio, 
*0.1 / 2h pr r r¢ = ¢, 

varies in the range 0.1 <
*0.1 / 2h pr r r¢ = ¢ < 2, while keeping all other parameters fixed, for 0,1,2n=  and 

2p= . It can be inferred from this figure that the natural frequencies decline as the host plate 

to piezoelectric density ratio, 
*r, increases. 

 

5 Concluding remarks 

 

In the present research work, a numerical solution formulation is proposed for small amplitude 

free vibrations of the open circuit piezoelectric coupled thin annular plates using the generalized 

differential quadrature method (GDQM). The convergence studies were carried out to 

determine the number of grid points required for an accurate solution of the problem.  

It was found that to achieve a converged solution for the natural frequencies, the number of grid 

points should be increased for larger mode numbers.  The accuracy  and validity of the present 

GDQ formulation are verified through comparative studies. Moreover, implementing the 

present GDQ numerical scheme, the effects of geometrical and material parameters as well as 

mechanical boundary conditions on the natural frequencies are studied in detail and the 

following conclusions are extracted: 

By increasing the outer to inner radius ratio, b/a, while the inner radius is maintained 

constant, all the natural frequencies are decreased almost with the same attitude. The natural 

frequencies, expressed in the logarithmic scale, increase smoothly as the host plate thickness to 

inner radius ratio, /h a, takes larger values.  

Similarly, the logarithm of the natural frequencies  rise  almost  linearly  as  the  piezoelectric  

to  host thickness ratio ( /ph h) increases. Also, it is observed that higher restraining boundary 

conditions such as CC and SC, cause larger natural frequencies in the plate. However, the 

raising effect of the supporting type on the amount of the natural frequency diminishes for 
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higher nodal diameter numbers. Furthermore, as the host plate modulus to piezoelectric 

modulus ratio, *E , takes larger values, the natural frequencies increase. However, as the host 

plate density to piezoelectric density ratio, 
*r, increases, the natural frequencies are declined. 
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Nomenclatures 

 

a                                 Inner radius 

b                                 Outer radius 

11

pC , 12

pC , 13

pC  , 33

pC     Piezoelectric moduli of elasticity under constant electric field 

rD , Dq, zD               Components of the electric displacements  

E                                Young modulus of the host plate 

rE , Eq, zE               Components  of the electric field intensity  

31e , 33e                        Piezoelectric constants 

h                                 One-half of the host plate thickness 

ph                                Piezoelectric layer thickness 

[ ]K                             Mass matrix 

[ ]M                            Stiffness matrix 

rrM , Mqq, rM q        Bending  and twisting moments 

p                                Wave number in q direction 

rq , qq                        Resultant shearing forces  

( , , )r zq                        Coordinates of the cylindrical coordinate system 

ru                                Radial displacement 

uq                               Displacement along q coordinate  

zu                                Displacement along z coordinate 

( )W r                          Amplitude of the transverse displacement  

[ ]X                            Eigen vector or the vector of node point variables 

rre , qqe  
, rqe               Strain components 

11X , 33X                      Dielectric constants of the piezoelectric layer 

hr , 
pr                       Mass density of the host and piezoelectric layers resp. 

( ) ( ) ( ), ,h h h

rr rq qqs t s             Stress components in the host layer 

( ) ( ) ( ), ,p p p

rr rq qqs t s             Stress components in the piezoelectric layers 

u                                Poisson’s ratio of the host plate 

ᶫ                                 Electric potential field 

( )rY                           Amplitude of the electric potential  

w                               Natural frequency of vibrations 
( )() h

                            Superscripts h refers to the host layer  
( )() p

                            Superscripts p refers to the piezoelectric layers 

 

 

 

 


