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Free Vibration Analysis of Thin Annular
Plates Integrated with Piezoelectric Layers

_Qusing Differential Quadrature Method
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numerically studied based on the classical plate theory.
governing differential equeons with respective boundal
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algebraic equations by implementing the GDQ rule, t
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of a number of importanparameters on the natur:
frequencies are investigated.
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1 Introduction

Application of piezoelectric materials in advanced structuresdate in them somdnds of
adaptive or* s macharattershas developeaver the past few decadebhe piezoelectric
materials can be used aensors/actuators itne structural vibration control systems, for
measuing the strainandbr exering the actuation forces on trstructure From structural
viewpoint, vibration analysis of piezoelectric coupled circular/annular platessasctural
elementin different structural systems, including civil, mechanical, space and marine structures
as well as electronic componentssheeen the subject of many research works. Analytical
solution was presented by Wang et [al. for vibration analysis of a circular plate surface
bonded by two piezoelectric layers, based on the classical plate theory (CPT). Li[2kt al.
proposed an ahgical model for free vibration analysis of piezoelectric coupled moderately
thick circular plate based on the fumtder shear deformation plate theory (FSDT). In their
study, a sinusoidal function is adopted to describe the distribution of elecamtipbalong the
thickness directiof the piezo patche8y implementingooth CPTandFSDT plate theories,
analytical solutions erepresented by Duan et @8] for the freevibratiors of piezoelectric
coupled annular plate.
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They corluded that Mindlimmodel provides better solutions than those from Kirchhoff model
and theerror percent of theesultsis larger for higher resonant frequenciégu et al. [4]
investigated vibration behavior ofcarcular steel substrate surface bonded by a piezoelectric
layer with open circuit. In their study, a solution for the electrical potential across piezoelectric
| ayers’ thickness was developed for the firs
conditiors. HosseiniHashemi et a[5-6] exhibited arexact solution fofree vibration analysis

of circular/annular moderately thick plates integrated with piezoelectric layers on the basis of
the Levinson plate theory (LPT) and thiocdder shear deformation plate theory (TSDT). Some
research works are alsdevoted tothe vibration analysis of piezoelectric coupled
circular/annular plates made of functionally graded mateEalahimi F and Rastgo[Y];
Hosseini Hashemi et gB]; Jafari Mehrabadi et g9]; Jodaei et a[10].

In all the previously mentionedesearchworks analytical solutios are developedor
vibration characteristics of the circular/annufdates integrated with piezoelectric layers.
Although analytical methods present clogedn solutions, they are limited to simple
geometries, specific types of boundary conditions and special loading cases. Differential
quadrature method (DQM) is a robust numerical approach which wdg fitsbduced by
Bellmanand Casti[11], was applied by Bert et &l12] for the first time to sudy dynamic
behavios of structures. There were some limitations in applications of DQ method. For
example, the early method for computing the weighting coefficlhtsh was improved by
Quan and Chanfd.3] and, Shu and Richard$4] resulted in ilkcorditioned matrices when a
large number of grid points are usédther restrictions, which have limited the application
range of the conventional DQ method inclu@strictions forimplementation of multiple
boundary conditions when the DQ method is usesbtee fourthorder differential equations,
discontinuities in geometry and loading, complex structures such as stepped beams under
general loadings, and frame structures which led to the intiiodwaf various methods such as
d -technique(Bert et al [15]; Wang and Berf16]), equation replaced approag®hu and Du
[17]), quadrature element method (QENOhen [18]; Stritz et al.[19]) and differential
quadrature element method (DQEWarami and Malekzad€20]; Wang[21]).

In this paper, a numerical solution for free vibration analysis of open circuit piezoelectric
coupled is presented by using a combination of differential quadrature (DQ) and generalized
differential quadrature (GDQ) method$ie governing differentiaquations derived according
to theKirchhoff plate theoryandMaxwell equatiortogethemwith an assumedlectric potential
function which satisés the open circudielectrical boundary conditien These equatiorere
discretized through quadrature ribeconvert them aa set of algebraieigenvalue equations
that can besolved for a number of first natural frequencies and vibration mode shapes of the
annular plateValidation andaccuracy of the preseBtQ solutionmethod are illustratedia
comparng its numericalresultswith those of analytical solutions available in the literattire
is worth noting thatthe analytical solutions are confined to some simple or speciad &ind
boundary conditionswhile the present GDQ numericethemecan be apptiable for any kid
of plateedge supportingApplying the GDQ modelparametricstudiesare conductetb show
the influence of various geometrical and material quantities as well as mechanical boundary
conditions on the natural frequencies of the pieztridecoupled annular plates.
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Figure 1 Geometry of a piezoelectric coupled thin annular plate.

2 Mathematical formulation
2.1 Kinematics and constitutive relations

A flat thin piezoelectric coupled annular plate is depicted in Fighrd he assembly includes

a host layer in the middle and two piezoelectric layers which are perfectly bonded to the upper
and lower surfaces of the host layer. The inner radius, outer radius, host plate thickness and
piezoelectric layer thickness are defi bya, b, 2h andh,, respectively. The topnd

bottom surfaces of the piezoelectric layers are fully covered by a very tiny electrode material

with negligible mechanical effecthe piezoelectric patches are polarized along their thickness
direction.In order to extract mathematical formulations, atfv@gonal cylindrical coordinate

system (,q,z ) is used with its origin at the mglrface and itg axis coincided with the plate

axis of symmetry. For the sake @dpledimtenveni e
formulation to represent the parameters of the host and piezoelectric layers, respectively.
According toCPT, the displacement field can be giverily

u, =Wrq.t) (1a)

ur = -ZM (1b)
W

, = -z% (10)

where, u,, U, and U, are the displacements in transvergeradial r, and tangential g,

directions, respectivellsoin Eg (1), t representthepast timeUsing the displacement field
givenby Eq. (1) along withsmall deformation assumptiatie following equalitiesire derived

for the straincomponents, , €, and &,[1]:
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6 =t =22 (22)
ur K

_Hu, U _Aapw W

e ~——=% + = —+
g ot &g rru &0

14U MU, U, & _a pw W
e =— r £ 49 9 2 =z 2
rq Z%QHC] nor 0 gl%ruquz ( (2c)
AccordingtoHoo k' s | aw, the stress components in t

m__ E _ Ez ¢fw & EW W @
Sr (1- uz)( o YE @-8)g rp ¢ rr+f; (32)

Ez efw w ?
sl = e, {e = ; KB
79 @A- uz)( 75" ¥) 1 -84)&? re g re| (36)
) = E _ Ez epw W 30)

= e =
T @+u) T (A48 rp gr?
in which,s andEar e Poisson’s ratio and Young’s modu
the piezoelectric layer, the constitutive relations can be writtgh] as

Sr(f)zélElﬁ" -lélEZ & e,E (4a)
sP=Cie €€, g,&E (4b)
tP=(Ci -Cp) & (4c)
where
_ CE 2
Ci=Cp (C—3) (52)
33
CE 2
C,=C; (C“E (5b)
33
_ cE
5= 6, —o (50)
33

in those C}, C5, Cf3 andC}, are the moduli of elasticity under constant electric field, and

€y, €gare the piezoelectric constarddso, E,, E,, andE, are theelectric field intensities
in the radial, tangential and transverse diresti@spectively, whicttan beobtained by the
derivatives of thelectric potential field, , asbelow[1]

_ W
E = — (6a)
wf
.
E = -/ 6b
M 1) ©D
_ W
2= T (6¢)
pz
and, theircorresponding electric displacemenls, Dq and D, arederived by{1]:
D, = XE (72)

D,= XE, (7b)
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Dz = Ql(err + zﬁ) :—33& (70)
where,
v = 3?1
Xz = & ct (8)

in that, X;;and X,, are the dielectric constants of the piezoelectric layer.

2.2 Electric potential distribution in piezoelectric layer

For the open circuit piezoelectric layer, an @legbotential function proposedly Wu et al.
[4], whichsatisfiesthe open circuit electrical boundary condition, is used herein which can be
defined by:

_fé &2z- (H ) gfl
€ H-h Hg,

where,A and B aretwo parametems functions ofr , g and z which can be determined by
applying the electrical boundary condition for open circuit piezoelectric layer emdgt)is
the electric potential on the m&lrface of the piezoelectric layer. Sinegchpiezoelectric
patchis surface bonded oane side of themetal host plate, the electric potential on ithe
interface is null, s,

f wr, ¥) Az Bt H h=h 9)

f(z=h =2 (10)
and, the electric displacement at finee surfacsof piezoelectric pata@salmostvanishasthe
surfaces arecompletely isolatef#], that is,

D,(z=H) © (11)
Applying the boundary conditions given By. (10) and Eq. (11)hefunctionsA andB can
be obtained as follosv

a 12
A= 5 2 / I__l%l w (12)
h hp Xas
where, D is the Laplace operator in polar coordinate system and is given by
2 2
_K M H
D + - 4+ = 13
w? rpor® g ~

Thus, the electric potential function can be written as
4(z- h)(z -2H . B
( X > i J S H(z h w (14)
(H-h) %
Eq. (14) giveshe electric distribution function along the thickness directiothefopen

circuit piezoelectric layer. Substituting Eq. (14) into Eqg. ¥#)ds three components of the
electric field

LNz 2H B /g, (W
Y (TR T G T (12
W DEZH D THe g,y (9
E H A
N CE T A (1eb
_g 2-H . &

and, thecorresponding electric dlsplacemeate derivedsthe following
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o =4y e 2H B ey, y (W

(H- h)’ O

D 4)(1(2 h)(Z_ZH .B ./ “‘ |1le3lH(z h) ( W

(H - h)’ rg K

D, 8>3(3(H h). e,(z H) w

(16a)

(16b)

(16c)

Also, the stress componentsamiezoelectric layer given by Eqg. (4) can be rewritten as:

g

Xy

o —_ 2 o ~
s(p) _agllz Hesl _glzv sz Hfi a ﬁW V¥1+° —
' ¢

X (;i 2+.C/£1 rr

o} — 2 o ~
(") = no Bwooa e’ d gw wio .
Sq 'a;clzz o> S X 65 Z_C;)C/fl r I‘+ﬁ %10_| h)2-

X3 A C

— a l.l W w
[(p) '(Clli G:12) Z@ n rz g

2.3 Motionand Maxwellequationswith respectivdl8. C. & s

The expression for bendimgoments M, M, and twisting momenM  are

H

h H
M, =fzs,dz= Fdz2 z9§jc
-H Hh h
H h H
— ~ — h
qu_nzsqq?Z_ ﬁ)qdqzz- Z(‘éﬁg
M, nzf Az = zﬁf‘) dz 2r 7°Rjc

8 z H .
%l(H h)z_(17a)

(18a)

(18b)

(18c)

Substituting Eg. (3) and Eq. (17)|nto the E($ (18), Ieads tahe following expressions fdhe

resultant moments

_ w8 fw
Mrr_Ath %%ﬁ rrl,lgpg
_aHw o a e w8
Moo= A Hr? a]a—z rr pg &
_ & pw w
M = -
rqg (AL AZ)?U g r2 q
where,
A= 2ER’  2(H’- h)G; H(H?- h)(&,)’
© 31 ) 3 X,
A = 2Euh®  2(H®- h?’)(_:lE2 H(H?- hz)(§31)2

3(1- v?) 3 X%

(19a)

(19b)

(19c¢)

(20a)

(20b)
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8 _
Pfé(H 2h)e, (20c)
The resultant shearing forcgsandq, can be obtainebly [4]:
q =M. M, M., M, (21a)
Jur rpg r
q =M Mg M @1b)
Jur rg r

Also, by substituting Eg. (19)into Ecg. (21), the following expressions ftre shearing forces
arederived

=AL(® ﬂ—ﬂ (223)
q, = A_L u ( ) ﬂ— (22D)

Now, according tdheKirchhoff plate modelthe equatlon of motioalongz axis expressed
for an elemenof the laminated plate cyllndrlcal coordlnatels given by [4]

h
worgoro 2|J u
where, r"and 7" are the density of the host plate and the piezoelectricslaygmpectively.

Substituton of Egs. (22) into Eq. (23)yields the governing equatiar vibrationsfor thesmart
laminatedplatebased orthe CPT

ADDv A /D ‘rﬁ%\' 0 (24)
where,
r=2g ’h + P(H B (25)

The Maxwell equatiorintegrated over the piezoelectiayerthicknesssaythelower one may
be expresseds below[3]

"2U(rD,) . pD
~Lu(rD,) o, | B, (ﬁ a (26)
he T rg zp

This states that integration over the thickness from the divergence of the electric flux vanishes.
Now, by substituting from Eq(16) into Eq. (26)we reach tghe following PDE

BOW B /D Btw [B/+0 (27)
in that
B = H(H '2;3)3@31 % (28a)
B, = 8(H'—3h)>1<1 (28b)
B,= {H Rg, (28¢)
B, - 8%y (28d)

H-h
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For a thin annular plate, the expressions for clamped simplysupported boundary
conditions which may be applied on the inner and/or oatigeof the annular platare given
as follows

At a dampededge
w=0, ™ g (29)
Jr
At a smply-supportecedge
w=0, M, O (30)
If the plate is insulated at the edge, the electrical flux conservation equation is gi8gn by
H
P (r,g,t)dz=C (31)
h

Substitutingrom Eq. (164) into the above equation, the electric boundary condiiobtained
as

% - (32)

The solutios for w (r,qg,t)and/ (r, ¢ )can be considered aslow[3]:
w(r,g,t) =W(r)e'™" * (33)
J(rg)= Yr)e®? (34)

where W (r)andY (r) are the amplitude of the displacement and electric potential piates
thicknessdirection as functios of only ther coordinate, w is the natural frequencyf
vibrations,andp is the wave number i direction.Now, aubstituton of Egs. (33) and(34)
into Egs. (24) and (27)yields

ADW A DY aW (35)
BDW B8 DW+W DB +0 (36)

where,
— d? 1 d K
D = — 37
dar> r dr r2 57)
- 4 3 2 2 A
5p d gd3 2k2+1d2 2k2J§+1_d K 44k2 (38)
dr* rdr r< dr r= dr r
in thosek is the same ag, i.e. the wave number ig direction(k = p). Also, the mechanical

and electrical boundary conditions can be rewriitteterms ofW and( as below
Me c h ani cadclan®pededges .

dw

W=0, —=
ar =0 (39)
Me ¢ h a ni cadsmiy-sippasteccdge
W =0,
dZW 1dw (40)
Agz " AT B Kw A Y0

r dr
Electrical B.Csfor piezo patches.
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Figure 2 Four types of supportingpplied on the piezoelectrioupled annular plate, CC, SS, CS and SC
respectively.

dy
— =0 41
ar (41)

To obtain theannular plateatural frequencies and corresponding mode shapes, two forth order
ordinarydifferential equations givehy Egs.(35), (36) shouldbe solvedegardingone of the

edge supportingonditions giverby Egs. (39) (41) applied tothe inner ¢ =a) andor outer (

r =b) circular boundaries of the annular plate. Inghesent work four different combinations

of mechanical boundary conditiompplied at the two circular edgase considered namely,
Clameal-Clamed (CC), Sim@-Simple (SS), Simpd-Clamped (SC) and Clame8imple (CS),

where the first and second letter denote the boundary condition at the inner and outer edge,
respectively.

In Figure(2) each of the four types of supporting are shown schematically.

3 Problem solution
3.1 Review of differential quadrature method

In differential quadrature method, ath+order xpartial derivative of functiorf (x) at agrid
point X =X, may be approximateals[22]:

d_JX(n’*):élA‘@f()g), i 42,.N,n #2..N (42)

where N is the number of grid points an%tj(”) are the weighting coefficientsr calculating

the rth-orderderivativeat thei™ sampling pointThe procedure adopted foetgérmination of
the weighting coefficients artle quality ofselection of the grid poinia the solution domain
are twothe key points in the successful application of the differentiadcptare methodin
this paper, weadopted theprocedureintrodued by Shu and Richasi[14] which has been
demonstrated to makaore accurateomputationatesultsthanthe other methods. According
to their rule, the weighting coefficients of the ficster derivativeswith resgect to a spatial
variable say, can be determined §22]
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M(x)

TEEITEINA
X - X - -
A‘(l):\: h: 8 ;i) 4,2,3,..N (43)
- a AY, for o5
oo
where,
N
M(x)= O (x -x%) (44)
k=1,i k
and, the weighting coefficients of second, third, and fowotder derlvatlvesA,J , AP and
A may be computed by
N
2 =13 A® AD
2= A’ A 45
A a A (45)
N
@ =13 AL A2
=g AA 46
A a A (46)
N
4 =3 AD A®
S =a AR 47
A a A (47)

Also, in Shu and Richards procedure amequallyspaced grid pointistribution so-called
Chebyshev nodes applied, which can be expressed domainoN @ w as[14]

X =a +—29 cofw—— a0k I12,..N (48)
2 @ ¢ H

3.2 Generalized differential quadrature rule

The essence of GDQR)eneralized differential quadrature rube)d differential quadrature
element method (DQEMis based orapplyingtwo degrees of freedom®QFs) at the end

points namely,w,, w®, Wy, w " instead of one DORo handle the two boundary

conditions. The weighting coefficients of the ficstder derivatives in GDQR based on the
Lagrange interpolation can be modified[B®]:

eA] for i=1,2,..N;j =1,2,..N
& Io fori=1,2,..N;j N 4N 2

The weighting coefficients of the secoeadder derivatives for all inner grid points
(i =2,3,...N -1 can be determined §23]

E(2)_e @ for i=2,3,..N -1, 4,2,.N

" j0 fori=23..N -1,j] N W 2+
and atthetwo end pointgi.e. i =1,N ) are computed differentlas follows,

(49)

(50)

(”-aﬁé”ﬁp“’ for j 4,2,....N,

E@) < 2  —p® (51)
i(N+1) — ’ PN ) i
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Eq. (51) is derivedegardingthe fact that the secoratder derivative with respect toat the
two end points can be computed by using the DQ rule, namely,

fi;:ieNiZ\kfk =Ni§.'_%f Al A § |

_aAk aAk]fJ -'-'A‘lfll 7%\1 f\ll ﬁd’ I 1’N (52)

k=2
The obvious difference betweEq. (52) andceq. (42)rewr|tten forn=2, is thatin the former
the range of summation changes fribto N + 2. The weighting coefficients of the thirdnd
fourth-order derivatives with respect xaansimply be computed bj23]

N

Eij<3) = a. Aiél) E<('2); i 4,2,...,N , J 4.,2,...[\] (53)
k=1
N

Ei1(4) = a Aiéz) Ek('Z); i 4,2,...N, ] %2,..N (54)
k=1

3.3 Discretization of the differential equatiioy DQM and GDQR

In this section, théwo governing differential equatior(85), (36)of the piezoelectric coupled
annular plateare transformed into algebraic equatitismplementinghe GDQR andDQM
respectively, along with their associated boundary conditibhis is because there aredw
mechanical B.Csat eachboundary pointwhile there is only e electrical B.Cat eachedge
point.

First, substitutingfrom Egs. (37) and (38) into the EBqg(35) and (36), the two fortbrder
governing differential equiains can be rewritten dise following expanded forms

dw ,2dw  2K+1dwW , 2K + dw

Aidr“ +A1? dr? A r? dr? A r3 dr (55)
A KT g T ALY QK e
d“ 2d3 & 2|€+1 adw a2k 1 d¢
Bl Bl? dr? +€;€B3 B T 'lae B‘* dr__ (56)

4k2 k % 1dY 2
+a§1 s ¥ 8l BR & L
rd dr r dr C r =
Now, by implementing the GDQR and DQM respectively to Eq. (55) and (&6), the
weighting coefficientsAij(”) and Eij(”) previously determined as described in seati8ri and
3.2 the discrete form of thequations are obtained as
Ni2e 2k> + 1 £2k2 +1

j=1 @

4 i
f j=1e

+wV\/i %gapj{ %A

C\CQ
<

=wWMW (i 2,3..N 1) (57)
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\ize 2 2k2+1 ékz +1 (PN o!
8 BE"+ 2 @e% a2 @ B g )
i o

j=1 @

k* - 4k? kK g9, N B K
+aé31 —zﬁ(a Aa*‘ﬁj&)uj%%a@—a
C K + = fi a ¢l +
=0 ( =2,3,..N 1)
(58)
The discretized form of the boundary conditieng. for an annular plate having Sé€tige
supporting can be considered as

N+2 \ 2) 2 k2 ,02
_ spiEi +—E§ SV‘aTW A0 (59a)
W, =W 0 (59b)
Also, the electrical boundary condltlon glven in Eq. (41) can be discretized as
a AEl)Y — (1) Y =} (60)

Assembling theliscrete forms of thgovernlng equations given in Eq57)-(58), thenapplying
the discretized boundary equations (59), (§®lds a set of (2N +2) 32N 2) algebraic

equations which can be written in the matrix fornraagigenvalue problem givéry

([K]- w[M])[X] 0 (61)
where,[K | and[M ] are the stiffness amtiass matrices, respectivend [X | is the eigen
vector or the vector of node point variabtigined as

ew, a
P g ey,
B
eu { . T .
[X]=f, gl 27 g ¥ =" 62)
I y T -1 T
Tw, I I
%Vvl(l)% |,¢Nj
W' §

By solving theeigenvalueequation, Eq(61), the natural frequencieandmode shapesf the
plate lateral vibrationsan be determined

4 Results and discussions

A computer code in MATLAB is developed to solve the eigenvalue equationigniEmn (61).

In these computations the material and geometrical properties are as listed iL)[ alrikess
otherwise specified=or convenience, the notatiamn is used to represent a natural frequency
corresponding to the mode numbgrr{), in thatp andn denotethe number ohodaldiameters
andnodalcircles respectivelyit should be mentioned that the numbenoéial diameters and
nodal circles are defined as the number of zeros indttieection and in the-direction
respectivelywhich are counted itheir whole domains [3].
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Table 1 Materialand geometricgbroperties of théost andpiezoelectridayers[3].

Property Host layer (Steel) Piezoelectric layerRZT4)
Young’ s$(Nmd du E =200 310 Cj =132 30

- C5=7130

- C; =73 310

- Cs, =115 310

Mass density (kg/& r"=7.8 316 r? =75 310
e,, (C/m?) - -4.1

e, (C/nP) - 14.1

Xy, (F/m) - 7.128 10°
X35 (F/m) - 5.848 10°
a (m) 0.1 0.1

b (m) 0.6 0.6

h (m) 0.01 i}

h, (m) - 0.001

4.1 Convergence and comparatistidies

In this sectionthe convergencef the presemumerical solutioms investigateavith increasing
the number of node pointsr a set ofmode shapesorresponding tqp =0,1,2 andn =0,1, 2,

computed fotwo different types of the edge supporting conditions CC anBi§&e(3) shows
the convergence patternstbk plate natural frequenciefor all combinations of these mode
numbers andupporting conditions

Regardinghesediagramsit is found that:

e Irrespectiveto the plate supporting type, the natural frequencies of the sandwich plate
converge to a stable valaes the number of grid points increaskscan be observed that
considering anumber of grid pointdN=27, often makessufficienly accurate result®r the
natural frequenciespn with nandp up to 2.

e For various modaumbers g, n), different convergence rates miag observeddowever,
the convergence rate fire modes of themallest number ofnodaldiameters (i.ep =0) is
fasterthanthose ofp =1, 2.

e For all of themodenumberstheplateboundary conditions play an important role in the
convergence rate of the GDQM may be seerthatthe convergence rate for the plateSS
supporting types faster than that of the pdf CC supporting type

In order to verify the accuracy and capability of the present GDatiral frequencies of
apiezoelectric coupled annular plates various boundary conditions including CC, SS, SC
and CS, have been obtained for three different values of nodal cirtke$,1,2) and
nodal diameters§ =0,1,2). The numerical data have been achieved\by 35 grid points
and are tabulated in Tal(2).
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Figure 3 Convergence of thiéirst three natural frequencies & 0,1, 2) of the piezoelectricoupledannular plate
versus the number of grid points, a) Ce=0; b) CC,p=1c¢)CC,p=2;e) SS,p=0;f) SS, p=1; g) SS,
p=2

In this table the results of the exact solutions performed by Duan et ahd3hose from 3D

FE analyses by ABAQUS 6[3] are also included for comparison. According to the tabulated
results, it may clearly be se#rat the numerical results of theesent GDQM are very close to
those of the exact aride FEM solutions reported in the referefibean et al[3]). Therefore,

it can beconcluded thathe presenGDQM providesanaccuratend eliable numerical solution
formulation Furthermore, byomparing the percentage differeaggven in Table(2), it is
observed that at the higher modes of vibration (modes with greater nodal circles) the difference
is more significantCorresponding to the tabulated natural frequenchesyibration mode

shapes of theannular platesare shown irFigure (4) just for CC and SS types of boundary
conditions
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Table 2Comparison of natural frequencies (rad/s) of piezoelectric coupled annular plates with different boundary
conditionsfor h/a=.1.

L Present Exact - FEM i
Boundary Conditon P n GDOM (Duan et Diff. % (Duanet Diff. %
al. [3]) al. [3])
cC 0 0 2797.48 2815 0.62 2812 0.52
1 7725.01 7786 0.78 7659 -0.86
2 15192.16 15306 0.74 14753 -2.98
1 0 2934.31 2952 0.60 2942 0.26
1 7967.12 8030 0.78 7882 -1.08
2 15492.16 15608 0.74 15020 -3.14
2 0 3483.88 3506 0.63 3471 -0.37
1 8772.34 8840 0.77 8635 -1.59
2 16445.89 16569 0.74 15877 -3.58
SS 0 O
1386.84 1396 0.66 1395 0.58
1 5159.67 5198 0.74 5173 0.26
2 11394.39 11489 0.82 11283 -0.99
1 0 1604.06 1613 0.55 1593 -0.69
1 5522.76 5558 0.63 5490 -0.60
2 11821.95 11918 0.81 11647 -1.50
2 0 2341.76 2355 0.56 2312 -1.29
1 6613.92 6669 0.82 6521 -1.42
2 13150.19 13225 0.57 12798 -2.75
Cs 0 O 1832.22 1843 0.58 1848 0.85
1 6190.89 6220 0.47 6164 -0.44
2 13013.64 13111 0.74 12770 -1.91
1 0 1971.77 1983 0.57 1981 0.47
1 6428.74 6459 0.47 6384 -0.70
2 13311.91 13411 0.74 13038 -2.10
2 0 2518.77 2535 0.64 2511 -0.31
1 7206.40 7259 0.72 7134 -1.01
2 14262.50 14367 0.73 13903 -2.59
SC 0 O 2197.97 2216 0.81 2213 0.68
1 6552.76 6615 0.94 6544 -0.13
2 13420.94 13531 0.81 13169 -1.91
1 0 2428.72 2446 0.71 2418 -0.44
1 6919.57 6983 0.91 6865 -0.79
2 13848.46 13961 0.81 13528 -2.37
2 0 3216.69 3236 0.60 3178 -1.22
1 8051.14 8119 0.84 7902 -1.89
2 15154.08 15274 0.79 14663 -3.35

4.2 Parametric studies

In the previous sudection the convergence and accuracy of the developed generalized
differential quadrature formulation has been investigated and verified. IsutEsction,by
implementingthe present GDQM, the effects of a number of geometrical and material
parameters sawell as mechanicdboundary conditions on the natural frequencies of the
piezoelectric coupled annular plates are examined. All the numerical data presented hereafter
have been achieved B35 grid points.
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Boundary n=0 n=1 n=2
Conditiors P

CC 0

A
=

Wl

SS 0

Figure 4 Lateral vibration mode shapesf the piezoelectric coupled annular ptavdth CC and SSBoundary
conditionsfor h/a=0.1

In Figures(5), (6) effect of the outer/inner radius ratib/§) on the natural frequency is
investigated.The variations of t he fob r s o2ctf theee na
piezoelectriccoupled annular platas functions of the outer/inner radius ratiéa] have been
depicted in Figurefb), (6) respectively forCC and SC edge condition§he outer radius,

b, is varied from 0.2 to th in steps of 0.In, while the inner radius is antained constant value
a=0.1m.

It may be found that by increasiibp, all the natural frequencies in the logarithmic scale are
decreased almost with the saatgtude

Figure(7)s hows t hree f i r s o,0@dftheS& smafftaneuigrplateversus s w
the host plate thickness to inner radius ratid4). The host plate thickness takes the values
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h =5,6,7,8,9,1imm while the inner radius is maintained a constant vak@1m, and tle
thickness of the piezoelectric layers is assumed to be 10% of the host plate thiskmaas.

be observed in Figung), the natural frequencies, expressed in the logarithmic scale, increase
smoothly ash/a takes larger valuegigure(8) depicts the variation in the natural frequencies

of the CC smart annular plate versus the piezoelectric to host thicknesshratib)(for
n=0,1,2 and nodal diameter numbgy =1. The host plate thickness is assumed to be of
constant valuénr =0.01m, while the thickness of the piezoelectric layers varies from 0.0005 to

0.004 m in steps of 0.0005 m.
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Figure 5 Variation of the first three natural frequencies of the piezoelectric coupled aptatiarversus the
outerinner radius ratipb/a, (CC,h/a=0.1,a=0.1m,n =0,1,2, p=0)
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Figure 6 Variation of the first three natural frequencies of the piezoelectric coupled apiatiarversus the
outerinner radius ratiob/a, (SC,h/a=0.1,a=0.1m, n=0,1,2, p =0)
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Figure 7 Variation of the first three natural frequencies of the piezoelectric coupled aplatéaversus theost
plate thickness to inner radius ratida, (SS,b/a=6, a=0.1m, n=0,1,2, p =1)
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Figure 8 Variation of the first three natural frequencies of the piezoelectric coupled anpldse with the
piezoelectric to host thickness ratio (33=0.1,h=0.01 m n =0,1,2, p=1)

From this figure which illustrates the effect of the piezoelectric patches, it can be realized that
the natural frequencies in the logarithmic scale rise almost linearly as the piezoelectric to host
thickness ratiolg, / h) increases.

In Figure(99t he annul ar pl a koés plattad versua the nbdalediqroeten c y
number,p, for 4 different types of boundary conditions. It may be observed that higher
restraining boundary conditions such as CC and SC, cause larger natural frequencies in the

plate. However, the increasing effect of the supportyme on the amount of the naail
frequency diminishes for higheodal diameter numbers. Comparisbetween thecurves of
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Figure 10 Variation of the first three natural frequencies of the piezoelectric coupled aptatawith thenost
to piezoelectric modulus rati&;, (CC,b/a=6,h/a=0.1 p=2, n=0,1,2).

CS and SC shows that the frequencies of SC are greater than those of CS, which may be
explained by the fact that clamping the outer edge causes more rise in the plate stiffness than
doing the inner edge.

Denoting the ratio of the host plate modulus ta@peectric modulus a&', the variation of
three nat uroal 2 whodthg CE sntart @amular @atith E has been
illustrated in Figurg10) (0.1¢E~ =E /C] ). For this purpose, while all other parameters

are kept fixed, the host plate modulus varied in the rangeEl® 400 GPa.
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Figure 11 Variation of the first three natural frequencias= 0,1, 2) of the piezoelectric coupleghnular fate
versus thénost plate to piezoelectric density raiio, (SS,b/a=6,ha=0.1 p =2).

It can be inferred from this figure that & takes larger values, the natural frequencies
increaseFigure(11) provides information about the change in the first three natural frequencies

of the SS smart annular plags the host plate to piezoelectric density ratio, =P/ ",

varies in the range 0.1/< < 2, while keeping all other parameters fixed, for 0,1,2 and
p =2. It can be inferred from this figure that the natural frequencies decline as the host plate

to piezoelectric density ratio; , increases.

5 Concluding remarks

In the present research work, a numerical solution formulation is proposed for small amplitude
free vibrations of the open circuit piezoelectric coupled thin annular plates using the generalized
differential quadraturemethod (GDQM). The convergence studies were carried out to
determineghe number of grid points required for an accurate solution of the problem.

It was found that to achieve a converged solution for the natural frequencies, the number of grid
points shold be increased for larger mode numbers. The accuracyadiddy of the present

GDQ formulationare verified through comparative studielloreover implementing the
present GDQ numerical schentiee effects of geometrical and material parameters dsawel
mechanical boundargonditions on the natural frequencies are studied in detail and the
following conclusions are extracted:

By increasing the outer to inner radius ratida, while the inner radius is maintained
constant, all the natural frequence® decreased almost with the same attitude. The natural
frequencies, expressed in the logarithmic scale, increase smoothly as the host plate thickness to
inner radius ratioh/ a, takes larger values.

Similarly, the logarithm of the natural frequencies rise almost linearly as the piezoelectric
to host thickness ratich( / h) increases. Also, it is observed that higher restraining boundary

conditions such as CC and SC, calssger natural frequencies in the plate. However, the
raising effect of the supportiniype on the amount of the natural frequency diminishes for
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higher nodal diameter numbers. Furthermore, as the host plate modulus to piezoelectric
modulus ratio,E", takes larger values, the natural frequencies increase. However, as the host

plate density to piezoelectric density ratio, increases, the natural frequencies are declined.
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Nomenclatures

a

b

Cj.Cj.C
D,, Dq, D,

E

E,.E, E,

€51, €53

h

hp

[K]

[M]

M,, M,, M
p

g, q,

(r,g.2)

ur

U,

uZ

W (1)

[X]

Er eqq’ erq

Xn' X33

r"ore

s g (;)
m 1 fg? ¢

sr(rp)’ 5)’ (l;;)4

u

L

Y (r)

w

O(h)

O(p)

p p
13 C33

Inner radius
Outer radius

Piezoelectric moduli of elasticity under constant electric field

Components of the electric displacements
Young modulus of the host plate
Componentsof the electric field intensity
Piezoelectric constants

Onehalf of the host plate thickness
Piezoelectric layer thickness

Mass matrix

Stiffness matrix

Bending and twisting moments

Wave number ing direction

Resultat shearing forces

Coordinates of the cylindrical coordinate system
Radial displacement

Displacement along coordinate

Displacement along z coordinate

Amplitude of the transversisplacement

Eigen vector or the vector of node point variables
Strain components

Dielectric constants of the piezoelectric layer

Mass density of the host and piezoelectric layers resp.
Stress components the host layer

Stress components the piezoelectric layers

Poisson’s ratio of the
Electric potential field
Amplitude of the electric potential

Natural frequency of vibrations
Superscript$ refers to the host layer

host

Superscriptp refers to the piezoelectric layers

pl at e



