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1 Introduction 

 

Porous material is a media containing pores filled by a fluid. The skeletal part of the material 

is called matrix or frame and is usually a solid. Porosity is the ratio of holes to the overall 

space of porous material. Nowadays porous materials because of their permeability, high 

tensile strength and electrical conductivity is applied in an astonishingly large body of 

applications, including petroleum geophysics, civil engineering, geotechnical engineering, 

geology engineering, hydrology and biomechanics. In most of these applications, theory of 

poroelasticity is commonly exploited to examine the raised problems.  

Biot [1] is the pioneer who has studied the poroelasticity. In this model, a porous material is 

composed of two phases namely solid and fluid.  
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Buckling and Static Analyses of Functionally 

Graded Saturated Porous Thick Beam Resting 

on Elastic Foundation Based on Higher Order 

Beam Theory 
In this paper, static response and buckling analysis of 

functionally graded saturated porous beam resting on 

Winkler elastic foundation is investigated. The beam is 

modeled using higher-order shear deformation theory in 

conjunction with Biot constitutive law which has not been 

surveyed so far. Three different patterns are considered for 

porosity distribution along the thickness of the beam:  

1) poro/nonlinear non-symmetric distribution,  

2) poro/nonlinear symmetric distribution and  

3) poro/monotonous distribution. To obtain the governing 

equations, geometric stiffness matrix concept and finite 

element method is used. The effect of various parameters 

such as: 1) Stiffness of elastic foundation 2) Slender ratio 

3) Porosity coefficient 4) Skempton coefficient 5) Porosity 

distributions and 6) Different boundary conditions has 

been investigated to draw practical conclusions. 
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The linear poroelasticity theory of Biot has two characteristics:  

1. An increase of pore pressure induces a dilation of pore.  

2. 2- Compression of the pore causes a rise of pore pressure. There are several theories have 

also been developed for pore materials, but in practice they do not offer any advantage 

over the Biot theory. Theory of Biot poroelasticity in a drained condition is similar to the 

theory of elasticity in which the relation between strain and stress is based on Hook's law. 

During the last several years, porous material structures such as beams, plates, and shells 

have been used widely in structural design problems. Therefore, it is important to study the 

behavior of porous beams subjected to static and buckling loads. 

Many researchers have studied static, buckling and vibration analyses of porous beams. But, 

in most of these studies, Hook's law (drained condition) and simple theories of beam are 

considered to model the problem in which some of them are referred here. Buckling of porous 

beams with varying properties was described by Magnucki and Stasiewicz [2]. They used a 

shear deformation theory to investigate the effect of porosity on the strength and buckling 

load of the beam. Magnucka-Blandzi [3] investigated the axi-symmetric deflection and 

buckling analysis of circular porous–cellular plate with the geometric model of nonlinear 

hypothesis. Jasion and Magnucka-Blandzi [4] presented the analytical, numerical and 

experimental buckling analysis of three-layered sandwich beams and circular plates with 

metal foam. Mojahedin and jabbari [5] investigated buckling of functionally graded circular 

plate made of saturated porous material based on higher order shear deformation theory. The 

effects of different parameters such as porosity coefficient, Skempton coefficient and porosity 

distribution on the critical buckling load were studied. Mojahedin et al. [6] employed the 

higher order shear deformation theory to examine the buckling of a fully clamped FG circular 

plate made of saturated porous materials subjected to an in-plane radial compressive load. 

Jabbari et al [7] studied the thermal buckling of solid circular plate made of porous material 

bounded with piezoelectric sensor-actuator patches.  

The effects of thickness of porous plates, porosity and piezoelectric thickness on thermal 

stability of the plate were investigated. Buckling behavior of symmetric and antisymmetric 

FGM beams was investigated by khalid [8]. Tornabene and Fantuzzi et al. [9] presented a 

higher-order mathematical formulation for the free vibration analysis of arches and beams 

composed of the composite materials. The Euler- Bernoulli beam theory and Hamilton 

principle have been used to obtain the governing equations. Fouda [10] studied the bending, 

buckling and vibration of the functionally graded porous Euler- Bernoulli beam using finite 

element method. The governing equations are obtained using the Hamilton principle, and the 

finite element method is used to solve the equations.  

Chen et al. [11, 12] presented elastic buckling, static bending, free and forced vibration 

analyses of shear deformable Timoshenko FG porous beams made of open-cell metal foams 

with two poro/nonlinear non-symmetric distribution and poro/nonlinear symmetric 

distribution. Galeban [13] studied free vibration of functionally graded thin beams made of 

saturated porous materials. The equations of motion were derived using Euler-Bernoulli 

theory and natural frequencies of porous beam have been obtained for different boundary 

conditions. The effects of poroelastic parameters and pores compressibility has been 

considered on the natural frequencies. Aghdam [14] studied nonlinear bending of functionally 

graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal 

strain gradient theory.  

Gorbanpour [15] studied the free vibration of functionally graded porous plate resting on 

Winkler foundation based on the third-order shear deformation theory.  
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Buckling analysis of two-directionally porous beam was investigated by Haishan Tang [16] 

based on Euler–Bernoulli beam theory, minimum total potential energy principle and 

generalized differential quadrature method. The above literature review shows that the 

analysis of porous beams has mainly been performed based on the simple beam theories 

(Euler and Timoshenko), and Hooke’s law or drained condition is considered to model the 

porous behavior of beam.  

In this paper, buckling and static bending analyses of thick saturated porous functionally 

graded beam resting on a Winkler elastic foundation has been investigated based on the third 

order shear deformation theory and Biot constitutive law which has not been surveyed so far. 

Distribution of porosity along the thickness is considered in three different patterns, which are 

uniform, symmetric nonlinear and nonlinear asymmetric distributions. Geometric stiffness 

matrix concept is used to express the stability equations and the finite element method is used 

to solve the governing equations .The effect of different boundary conditions and various 

parameters such as Biot, porosity and Skempton coefficients, slenderness ratio and stiffness of 

elastic foundation on buckling and static bending responses of porous beam have been 

studied. 

 

2 Governing equations 

 

Consider a beam made of saturated porous materials with rectangular cross section resting on 

Winkler elastic foundation. It is assumed that the length of the beam is L and cross section is 

b×h. Cartesian coordinates is used such that the x axis is at the left side of the beam on its 

middle surface Figure 1). 

As shown in Figure (1), the porosity distribution along the thickness is considered as: 1) 

nonlinear asymmetric, 2) nonlinear symmetric, and 3) uniform distributions. The relations of 

modulus of elasticity and the shear modulus for all three distributions are as following, 

respectively: 

𝐺(𝑧) = 𝐺0 [1 − 𝑒0𝑐𝑜𝑠 ((
𝜋

2 ∗ ℎ
) (𝑧 +

ℎ

2
))] 

𝐸(𝑧) = 𝐸0 [1 − 𝑒0𝑐𝑜𝑠 ((
𝜋

2 ∗ ℎ
) (𝑧 +

ℎ

2
))] 

 (1) 

𝐺(𝑧) = 𝐺0 [1 − 𝑒0𝑐𝑜𝑠 (
𝜋𝑧

2 ∗ ℎ
)] 

𝐸(𝑧) = 𝐸0 [1 − 𝑒0𝑐𝑜𝑠 (
𝜋𝑧

2 ∗ ℎ
)] 

 (2) 

𝐺 (𝑧) = 𝐺0[1 − 𝑒0] 

𝐸(𝑧) = 𝐸0[1 − 𝑒0] 
 (3) 

where e0 is the coefficient of beam porosity (0<e0<1). For distribution 1, E0 and E1 are 

Young’s modulus of elasticity at z=h/2 and z=-h/2, respectively. Also, G0 and G1 are the shear 

modulus at z=h/2 and z=-h/2, respectively.  

The relationship between the modulus of elasticity and shear modulus is Ej=2Gj (1+ν) (j=0, 1) 

and ν is Poisson’s ratio, which is assumed to be constant across the beam thickness.  
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2.1 Constitutive equations 

Constitutive equations of porous beam are based on Biot theory instead of Hook’s law. Biot 

theory deals with the displacements of the skeleton and the pore fluid movement as well as 

their interactions due to the applied loads [17]. The linear poroelasticity theory of Biot has 

two characteristics [2] 

1) An increase of pore pressure induces a dilation of pore. 

2) Compression of the pore causes a rise of pore pressure. particularly when the fluid cannot 

move freely within the network of pores. These coupled mechanisms display the time 

dependent character of the mechanical behavior of the porous structures. Such 

interactional mechanics were firstly modeled by Biot. 

The stress-strain law for the Biot poroelasticity is given by [18]. 

𝜎𝑖𝑗 = 2𝐺휀𝑖𝑗 + 𝜆휀𝑘𝑘𝛿𝑖𝑗 − 𝑝𝛼𝛿𝑖𝑗 

𝑝 = �̅�(휁 − 𝛼휀𝑘𝑘) 

�̅� =
2𝐺(𝑣𝑢 − 𝑣)

𝛼2(1 − 2𝑣𝑢)(1 − 2𝑣)
 

𝑣𝑢 =
𝑣 + 𝛼𝛽(1 − 2𝑣)/3

1 − 𝛼𝛽(1 − 2𝑣)/3
 

 (4) 

Here p is pore fluid pressure, �̅� is Biot’s modulus, G is shear modulus, 𝜈𝑢 is undrained 

Poisson’s ratio (ν< 𝜈𝑢<0/5), α is the Biot coefficient of effective stress (0<α<1), 휀𝑘𝑘 is the 

volumetric strain, 휁 is variation of fluid volume content, 𝛽 is Skempton coefficient. For p=0, 

the Biot law reduces to conventional Hook’s law or drained condition. 

The pore fluid property is introduced by the Skempton coefficient. The Biot’s coefficient (α) 

describes the porosity effect on the behavior of the porous material without fluid, and states 

that due to porosity, the resistance of the body varies a few percent and is defined as follows: 

𝛼 = 1 −
𝐾

𝐾𝑆
 

 (5) 

 

 

Figure 1 Distribution of porosity along the thickness  
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Where  Ks is the bulk modulus of a homogeneous material. The relationship between the bulk 

modulus and the shear modulus is as follows: 

𝐾 =
2(1 + 𝑣)

3(1 − 2𝑣)
𝐺 

 (6) 

The Skempton coefficient is an important dimensionless parameter for describing the effect of 

the fluid inside the cavities on the behavior of the porous material in the undrained state (휁 =
0), and is the ratio of the cavity pressure to the total body stress. 

𝛽 =
𝑑𝑝

𝑑𝜎
|𝜁=0 =

1

1 + 𝑒0
𝐶𝑃

𝐶𝑠
⁄

=
𝐾𝑢 − 𝐾

𝛼𝐾𝑢
 

 (7) 

where 𝐾𝑢 is the bulk modulus in the undrained state, K is the bulk modulus in the drained 

state, 𝐶𝑝 is the fluid Compressibility in the pores and 𝐶𝑠 is solid Compressibility. The 

Skempton coefficient also shows the effect of fluid Compressibility on the elastic modulus 

and the compressibility of the entire porous material [19]. 

 

2.2. Displacement field and strain 

  

Different theories express the behaviors of the beam. In the third-order shear deformation 

theory, the displacement field is assumed to be of the third order of z diraction and as a result, 

the transverse shear stresses are second-order, and the problem of using the shear correction 

coefficient is eliminated. The displacement field in this theory are in x and z directions as 

follows [20]: 

𝑢(𝑥. 𝑧) = 𝑢0(𝑥) + 𝑧Φ𝑥(𝑥) − 4
𝑧3

3ℎ2
[Φ𝑥(𝑥) +

𝜕𝑤0(𝑥)

𝜕𝑥
]  (8) 

𝑤 (𝑥. 𝑧) = 𝑤0  (9) 

where u and w are the displacement components in the x and z directions, respectively. 𝑢0 and 

𝑤0 are the midplane displacements and 𝛷𝑥 is the bending rotation of x-axis. h is the total 

thickness of the beam. In this paper, beam is supported by a Winkler elastic foundation. 

Therefore we have [21]: 

𝑃(𝑥) =  𝑘𝑤𝑤(𝑥)  (10) 

where 𝑘𝑤 is the elastic coefficient of the foundation. 

The matrix form of the displacement field is as follows: 

 �̅� = [
𝒖
𝒘

] = [𝟏 𝟎 −𝟒
𝒛𝟑

𝟑𝒉𝟐
(𝒛 − 𝟒

𝒛𝟑

𝟑𝒉𝟐
)

𝟎 𝟏 𝟎 𝟎

] 

[
 
 
 
 

𝒖𝟎

𝒘𝟎

𝝏𝒘𝟎

𝝏𝒙
Ф𝒙 ]

 
 
 
 

= [𝒁𝒄]  [�̅�]  (11) 

 
 The strain-displacement relationship in the matrix form is given below: 
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[휀] = [
휀𝑥𝑥

𝛾𝑥𝑧
] =  

[
 
 
 1 (𝑧 − 4

𝑧3

3ℎ2
) −4

𝑧3

3ℎ2
0

0 0 0 (1 − 4
𝑧2

ℎ2
)]
 
 
 

 

[
 
 
 
 
 
 
 
 

𝜕𝑢0

𝜕𝑥
𝜕Ф𝑥

𝜕𝑥
𝜕2𝑤0

𝜕𝑥2

Ф𝑥 + 
𝜕𝑤0

𝜕𝑥 ]
 
 
 
 
 
 
 
 

  = [Z] [ε̅] 

 (12) 

 In which [휀]̅ is expressed as: 

[휀]̅ = [𝑑] [�̅�]  (13) 

The matrix [𝑑] is presented in the appendix. Substituting 13 in 12, we have: 

[ε] = [Z] [d][U]  (14) 

    The matrix form of stress-strain relations is as follows: 

[σ] = [D] [ε] =  [D][Z][ε̅]  (15) 

In which [𝜎], [휀] and [𝐷] are: 

[𝜎] =  [𝜎𝑥𝑥 𝜎𝑥𝑧] 𝑇  (16) 

[휀] =  [휀𝑥𝑥 𝛾𝑥𝑧] 𝑇  (17) 

[𝐷] =  [
𝑄11(𝑧) 0

0 𝑄55(𝑧)
]  (18) 

Q11(𝑧) =  �̅�𝛼2 +  
𝐸(𝑧)

1 − 𝜗2
  (19) 

  :Q55(𝑧) =  𝐺(𝑧)  (20) 

2.3   Finite element model of governing equations  

 

To solve the problem, finite element method is applied. The beam is divided to a number of 

element. It is assumed that each node of beam element has 4 degrees of freedom. 𝑄 (𝑒) is 

considered as the vector of degrees of freedom for the beam element, and N (𝑥) is the matrix 

of the shape functions. Therefore, the displacement approximation in each element of the 

beam can be considered as: 

 [�̅�(𝑒)(𝑥)] = [𝑁(𝑥)] [𝑄(𝑒 )]  (21) 

 

 [N (x)] is given in the appendix. [𝑄(𝑒 )] contains 𝑢𝑖, 𝑤𝑖, 𝜕𝑤𝑖 / 𝜕𝑥 and Ф𝑖, or the components 

of the axial displacement, transverse displacement, gradient and rotation of the expected node 

i = 1, 2. For the approximation of Ф𝑖 and 𝑢𝑖, the linear bar element, and for the approximation 

of 𝑤𝑖 and 𝜕𝑤𝑖 / 𝜕𝑥, the Hermitian element of the Euler- Bernoulli beam is used. By using 

equation (9), (17) and (18), we have: 

 

[휀]̅ = [𝐵] [𝑄(𝑒)]  (22) 

Where  [B] is the matrix of derivative the shape functions and is presented in the appendix. 

Since, the displacements are large at the onset of buckling, the nonlinear terms of the strain- 

displacement relationship must be considered in the potential energy of system. The total 

potential energy of the system is due to the sum of the strain energy of linear and nonlinear 

terms of strain, and also the potential energy resulting from the elastic property of the 

foundation. Therefore, we have: 
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  𝑈 = 𝑈1 + 𝑈2 + 𝑈3 =
1

2
 ∭휀𝑇 𝜎 𝑑𝑉 +

1

2
∬𝑘𝑤𝑤2 𝑑𝑥𝑑𝑦 +

1

2
∬𝑃𝑤′

 
2 𝑑𝑥

=
1

2
  [𝑄(𝑒)]

𝑇
 (𝑏 ∫ [𝐵]𝑇[�̅�] [𝐵] 𝑑𝑥

𝑙(𝑒)

0

) [𝑄(𝑒)]

+
1

2
 [𝑄(𝑒)]

𝑇
(𝑏 ∫  [�̅�]𝑇 𝑘𝑤 [�̅�] 

𝑙(𝑒)

0

 𝑑𝑥) [𝑄(𝑒)]

+
1

2
 [𝑄(𝑒)]

𝑇
(∫  [𝑁𝑔̅̅ ̅̅ ]𝑇 𝑃 [𝑁𝑔̅̅ ̅̅ ] 

𝑙(𝑒)

0

 𝑑𝑥) [𝑄(𝑒)] 

 

(23) 

                         In the above equation, P = 1 for buckling analysis. 

Also, [D̅] and W are expressed by the following relations: 

[�̅�]  =   ∫  [𝑍] 𝑇[𝐷] [𝑍]
ℎ/2

−ℎ/2

 𝑑𝑧  (24) 

[𝑤] =  [0 1 0 0] [�̅�] [𝑄(𝑒)]  (25) 

[𝑤′] =  [𝑁𝑔̅̅ ̅̅ ] [𝑄(𝑒)]  (26) 

[𝑁𝑔̅̅ ̅̅ ] = [0 
𝜕

𝜕𝑥
(𝑁4𝑖−2)  

𝜕

𝜕𝑥
(𝑁4𝑖−1) 0   0

𝜕

𝜕𝑥
(𝑁4𝑗−2)0 

𝜕

𝜕𝑥
(𝑁4𝑗−1 ) 0]  (27) 

[N̅] is described in the appendix. In the static bending analysis, 𝑃𝑧 is the transverse load 

applied on the beam. The work done by the transverse load is defined as follows: 

𝑊𝑓
(e) = 

1

2
∬{𝑓2} 𝑤 𝑑𝑥𝑑𝑦 =

1

2
 [𝑄(𝑒)]

𝑇
   (28) 

In the next, stiffness matrix for each element of the beam [𝐾𝜀
(𝒆)], the stiffness matrix due to 

the elastic property of the foundation [𝐾𝑘𝑤
(𝑒)], the geometric stiffness matrix   [𝐾𝑔

(𝑒)], the 

external load vector for each element {𝐹(𝑒)} are introduced: 

[𝐾𝜀
(𝒆)]  =  𝑏 ∫ [𝐵]𝑇[�̅�] [𝐵] 𝑑𝑥

𝑙(𝒆)

0

  (29) 

[𝐾𝑘𝑤
(𝑒)]  =  𝑏 ∫  [�̅�]𝑇 𝑘𝑤 [�̅�] 

𝑙(𝒆)

0

 𝑑𝑥  (30) 

  [𝐾𝑔
(𝑒)] = 𝑃 ∫ [𝑁𝑔̅̅ ̅̅ ]𝑇[𝑁𝑔̅̅ ̅̅ ]

𝑙(𝒆)

0

  (31) 

{𝐹(𝑒)} = 𝑏 ∫ [�̅�]𝑇   [

0
𝑝𝑧

0
0

]  𝑑𝑥
𝑙(𝒆)

0

  (32) 
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3 Numerical results 

 

In this section, numerical results have been obtained for static bending and buckling of porous 

beam in undrained condition. The effects of different boundary conditions, porosity 

distribution, porosity parameters and slenderness ratio have been investigated. Critical 

buckling loads are non-dimensionalized according to the following equation: 

𝑃𝑑𝑖𝑚𝑒𝑛𝑡𝑖𝑜𝑛𝑙𝑒𝑠𝑠= 𝑃𝑐𝑟𝑖𝑡𝑖𝑎𝑙/(𝐸0∗ℎ) 

 

3.1  Verification 

 

3.1.1 Buckling of isotropic homogenous beam 

 

To validate results of present study, critical buckling load of isotropic homogenous beam for 

different boundary conditions and slender ratio (L/h) are obtained and compared with 

analytical results of [22] in Table (1). To derive results of Ref. [22] in the present study, 

Skempton coefficient is considered to be zero. This assumption gives 𝑣𝑢 = 𝑣, Biot’s modulus 

�̅� = 0 and pore fluid pressure p=0.  

Also, the following material properties and geometrical parameters are used: E = 10 MPa, L = 

1m, 𝑒0 = 0, b = 1m, 𝜗 = 0.33. Comparison of results in Table (1) shows excellent agreement 

between them. It should be noted that in [22], Hook’s law (drained condition) and 

Timoshenko beam theory is used to model the beam.  

 

3.1.2   Static bending of FGM porous beam in drained condition 

 

Also, to validate static bending results of present study, non-dimensional transverse 

displacement (w/h) for different loading conditions (Distributed and concentrated load), 

slenderness ratio and different porosity distributions of a porous C-F beam in drained 

condition have been obtained and compared with results of [10]. Hence, the following 

parameters are considered:  E = 200 GPa, h = 0.1m, b = 0.1m, e = 0.5, 𝜗 = 0.33.   

Also, to derive results of Ref. [11] in the present study, Skempton coefficient is considered to 

be zero (i.e. drained condition). Comparing results of the present study with reference [11] in 

Table (2) shows excellent agreement between them. 

3.2   Buckling of FGM porous beam in undrained condition 

An FGM saturated porous  beam with the following parameters is considered: E = 200 GPa, h 

= 0.1m, b = 0.1m, 𝜗 = 0.33. The effects of different boundary conditions, slenderness ratio, 

porosity coefficient and Skempton coefficient on the critical buckling load are investigated 

and shown in Tables (3), (4) and (5) for asymmetric, uniform and symmetric porosity 

distribution, respectively. As it is shown in these tables, by increasing porosity coefficient, the 

stiffness of the structure decreases and, as a result, the critical buckling load decreases. While 

by increasing the Skempton coefficient, critical buckling load increases.  

Also, by increasing the slender ratio, the buckling load decreases. The results show that the 

maximum and minimum buckling loads associated with the symmetric and uniform porosity 

distributions, respectively. This is due to the fact that in the uniform distribution of pores, the 

stiffness of structure is lower than those of distributions. It should be noted that for 

asymmetric distribution of pores, an extra moment exerts to the beam, and C-C beam can 

handle this extra moment. Therefore, only beam with C-C boundary conditions shows 

bifurcation-type of buckling (Table (3)). Table (6) also shows that by increasing the stiffness 

of the elastic foundation, the buckling load increases. 
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Table 1 Comparison of critical buckling load in the present study with Ref. [22]. 

 

 

Table 2 Non-dimensional transverse displacement of C-F porous beam compared with [10] (e0=0.5, β=0). 

Distributed load 

Porosity distribution 1 Porosity distribution 2 

Reference [10]   Present Reference [10]  Present 

L/H=10 0.00083 0.000827 0.001 0.000998 

L/H=20 0.01307 0.013075 0.01582 0.001582 

L/H=50 0.5089 0.509027 0.61646 0.06164 

Point load 

Porosity distribution 1 Porosity distribution 2 

                   Reference [10] Present  Reference [10]     Present 

L/H=10 0.00219 0.002196 0.00265 0.00265 

L/H=20 0.01741 0.01741 0.02108 0.020763 

L/H=50 0.27142 0.27142 0.32874 0.32381 

 

 

Table 3 Critical buckling load of C-C beam for nonlinear asymmetric porosity distribution  
  β=0 β=0.5 β=0.9 

L/H=10 e0=0.3 0.0024 0.0026 0.0028 

 e0=0.5 2.00E-03 2.30E-03 0.0026 

 e0=0.7 0.0015 0.0019 0.0024 

     

L/H=7 e0=0.3 0.0044 0.0047 0.005 

 e0=0.5 0.0037 0.0041 0.0046 

 e0=0.7 0.0028 0.0034 0.0041 

     

L/H=5 e0=0.3 0.0073 0.0077 0.0081 

 e0=0.5 0.006 0.0067 0.0073 

 e0=0.7 0.0047 0.0054 0.0064 

 

 

 

 

Simple-Simple Clamp-Clamp 

 Exact solution [20] present Exact solution[20] present 

L/H=10 8013.8 8014.4 29766 29777 

L/H=100 8.223 8.222 32.864 32.865 

L/H=1000 0.0082 0.0082 0.0329 0.0329 
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Table 4 Critical buckling Load For uniform porosity distribution  
C-C 

     

 
L/H=10 

 
β=0 β=0.5 β=0.9 

  
e0=0.3 0.0021 0.0023 0.0026 

  
e0=0.5 0.0015 0.0018 0.0023 

  
e0=0.7 8.83E-04 0.0012 0.0019 

      

 
L/H=7 

    

  
e0=0.3 0.0038 0.0042 0.0047 

  
e0=0.5 0.0027 0.0033 0.0041 

  
e0=0.7 0.0016 0.0022 0.0031 

      

 
L/H=5 

    

  
e0=0.3 0.0063 0.0069 0.0075 

  
e0=0.5 0.0045 0.0053 0.0063 

  
e0=0.7 0.0027 0.0034 0.0069 

S-S 
     

 
L/H=10 

    

  
e0=0.3 5.59E-04 6.43E-04 7.33E-04 

  
e0=0.5 4.00E-04 5.12E-04 6.71E-04 

  
e0=0.7 2.40E-04 3.48E-04 5.72E-04 

      

 
L/H=7 

    

  
e0=0.3 0.0011 0.0013 0.0014 

  
e0=0.5 7.92E-04 0.001 0.0013 

  
e0=0.7 4.75E-04 6.80E-04 0.0011 

      

 
L/H=5 

    

  
e0=0.3 0.0021 0.0023            0.0026 

  
    e0=0.5 0.0015            0.0018 0.0023 

  
e0=0.7 8.83E-04 0.0012 0.0019 

 

Table 5 Critical buckling load for non-linear symmetric porosity distribution 

C-C L/H=10 
 

β=0 β=0.5 β=0.9 

  
e0=0.3 0.0026 0.0027 0.0028 

  
e0=0.5 0.0023 0.0025 0.0026 

  
e0=0.7 0.002 0.0022 0.0024 

      

 
L/H=7 

    

  
e0=0.3 0.0047 0.0048 0.005 

  
e0=0.5 0.0041 0.0044 0.0046 

  
e0=0.7     0.0036  0.0038 0.0041 

      

 
L/H=5 

    

  
e0=0.3             0.0076 

            

0.0078 
0.008 

  
e0=0.5             0.0066             0.0071 
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Table 6 Effect of elastic foundation on the critical buckling load for uniform porosity distribution 

(L/H=5, β=0, e0=0.5) 

KW=0 KW=1E9 KW=5E9 

0.00054 9.12E-04 0.0018  
 

3.3   Static bending of FGM porous beam in undrained condition 

 

In this section, static behavior of the beam for different porosity coefficients and boundary 

conditions and different slender ratio is investigated. For this purpose the following 

parameters have been considered: E = 200 GPa, e0 = 0.5, L = 1m, b = 0.1m, h = 0.2m.  

The normal and shear stresses have been non-dimensionalized by the following relations: 

(𝝈𝒙, 𝝈𝒙𝒚) =  ((𝜎𝑥𝑥 ∗ A)/Q ∗ L, ((𝜎𝑥𝑦 ∗ A)/Q ∗ L)  (33) 

Where  Q is the load per unit length: 

Q = 𝐛 ∗ 𝒑𝒛  (34) 

Figure (2) shows the effect of the porosity coefficient on the deflection of S-S beam for L / 

H = 5 and asymmetric porosity distribution. As it can be seen, by increasing the porosity 

coefficient, the stiffness of the beam reduces and, as a result, deflection increases. Figure (3) 

shows the effect of the skempton coefficient on the deflection of S-S beam for L / H = 5 and 

asymmetric porosity distribution. This figure shows that by increasing the skempton 

coefficient, deflection of beam decreases. Figure (4) shows the effect of coefficient of elastic 

foundation on the transverse displacement of beam. This result denotes that by increasing the 

coefficient of elastic the foundation, transverse displacement of beam decreases significantly. 

Figure (5) investigates the effect of different porosity distribution on the deflection of the S-S 

beam for L / h = 5. The maximum and minimum magnitude of deflection belongs to the 

uniform and symmetric nonlinear distribution of porosity, respectively.  

This is due to the fact that for uniform distribution of pores, the stiffness of the beam is lower 

than those of porosity distributions. 

0.0069 

  
e0=0.7             0.0055 

0.

0057 
0.006 

S-S L/H=10 
 

β=0 β=0.5 β=0.9 

  
e0=0.3 7.09E-04 7.42E-04 7.73E-04 

  
e0=0.5 6.48E-04 6.98E-04 7.50E-04 

  
e0=0.7 5.85E-04 6.46E-04 7.20E-04 

      

 
L/H=7 

    

  
e0=0.3 1.40E-03 0.0015 0.0015 

  
e0=0.5 0.0013 0.0014 0.0015 

  
e0=0.7 0.0011 0.0012 0.0014 

      

 
L/H=5 

    

  
e0=0.3 0.0026 0.0027 0.0028 

  
e0=0.5 0.0023 0.0025 0.0026 

  
e0=0.7 0.002 0.0022 0.0024 
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Figure (6) shows the effect of porosity coefficient on the normal stress along the thickness of 

beam for L / H = 5 and x=L/2. As it is shown in Figure (6), for e0 = 0 (beam without pores), 

the stress distribution along the thickness is linear. Also due to the asymmetric nonlinear 

distribution of pores, the neutral axis is not located at z = 0. Figure (7) shows the effect of the 

skempton coefficient on the normal stress along the thickness of beam for L / H = 5 and 

x=L/2.  Figure (7) shows that by increasing the Skempton coefficient, normal stress decreases.  

 

 

 

 
 

Figure 2  The effect of the porosity coefficient on the deflection of S-S beam 

 

 

 

 
  

Figure 3  The effect of the skempton coefficient on the deflection of S-S beam 
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Figure 4 Effects of coefficient of elastic foundation on the deflection for S-S beam for  

nonlinear asymmetric porosity distribution and e0 = 0.25 

 

 

 

 

 
 

Figure 5 The effects of porosity distribution on the deflection of S-S beam. 
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Figure 6 The effect of porosity coefficient on the normal stress of the S-S beam for  

asymmetric nonlinear distribution of porosity (z, x=L/2) 

 

 

 
Figure 7 The effect of the skempton coefficient on the normal stress of the S-S beam for  

asymmetric nonlinear distribution of porosity (x=L/2) 

 

Figure (8), shows the effect of porosity coefficient on the shear stress along the thickness of 

beam for L / H = 5 and x=L/4.  Figure (8) denotes that the effect of the porosity coefficient 

on the shear stress in the lower surfaces is more distinct than the upper surface, and by 

increasing the porosity coefficient, the position of maximum shear stress is moved toward 

the upper surface of beam. Figure (9), shows the effect of the Skempton coefficient on the 

shear stress along the thickness of beam for L / H = 5 and x=L/4.  Figure (9) shows that by 

increasing the Skempton coefficient, shear stress decreases significantly. 
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Figure 8 The effect of the porosity coefficient on the shear stress of the S-S beam for  

asymmetric nonlinear distribution of porosity (x=L/4) 

 

 

 

Figure 9 The effect of the porosity coefficient on the shear stress of the S-S beam for  

asymmetric nonlinear distribution of porosity (x=L/4) 

 

4  Conclusion 

In this paper, static and buckling analysis of thick functionally graded saturated porous beam 

on an elastic foundation is investigated. Third-order beam theory in conjunction with Biot 

constitutive law and finite element method has been used to model the problem for the first 

time. The effect of various parameters such as boundary conditions, porosity coefficient, 

Skempton coefficient, porosity distribution and elastic coefficient of the foundation on the 

critical buckling load, displacements and stresses of beam have been investigated. The results 

show that by increasing the elastic coefficient of the foundation, the critical buckling load 

increases and the deflection decreases.  
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Also, the maximum and minimum magnitude of critical buckling loads obtained for nonlinear 

symmetric and uniform porosity distribution, respectively. Results denote that the effect of 

porosity coefficient on the shear stress in the lower surfaces is more distinct than the upper 

surface, and by increasing the porosity coefficient, the position of maximum shear stress is 

moved toward the upper surface of beam. Also, by increasing the skempton coefficient, 

transverse displacement, normal and shear stresses decreases.   
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Nomenclature 

 

𝐿 ∶      Length of the beam 
b:        Depth of the beam 

h:        Height of the beam 

e0:       Coefficient of beam porosity 

�̅�: Biot’s modulus 

𝜈𝑢: Undrained Poisson’s ratio 

𝑣: Poisson’s ratio 

https://www.sciencedirect.com/science/journal/09501401
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𝑝: Fluid pore pressure 

휁: Variation of fluid volume content 

𝛼: Biot coefficient 

𝐾𝑆:        Bulk modulus of a homogeneous material 

𝐾𝑢:        Bulk modulus in the undrained state 

𝐶𝑝:        Solid Compressibility 

𝑢0, 𝑤0 :    The midplane displacements and 𝛷𝑥 is the bending rotation of x-axis 

𝑘𝑤:        Elastic coefficient of the foundation. 

N (𝑥) :     Matrix of the shape functions 

𝐾𝜀
(𝒆)

:      Stiffness matrix for each element of the beam 

𝐾𝜀
(𝒆)

:      Elastic stiffness matrix  for each element of the beam 

𝐾𝑔
(𝑒)

:      Geometric stiffness matrix for each element of the beam    

𝐹(𝑒):        Geometric stiffness matrix  for each element of the beam  
 

 

Appendix 

The shape functions are as: 

[𝑁] =

[
 
 
 
 
 
𝑁4𝑖−3 0 0 0 𝑁4𝑗−3 0 0 0

0 𝑁4𝑖−2 𝑁4𝑖−1 0 0 𝑁4𝑗−2 𝑁4𝑗−1 0

0
𝜕𝑁4𝑖−2

𝜕𝑥

𝜕𝑁4𝑖−1

𝜕𝑥
0 0

𝜕𝑁4𝑗−2

𝜕𝑥

𝜕𝑁4𝑗−1

𝜕𝑥
0

0 0 0 𝑁4𝑖 0 0 0 𝑁4𝑗]
 
 
 
 
 

 

 

[𝑑] =  

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0 0

0 0 0
𝜕

𝜕𝑥

0
𝜕2

𝜕𝑥2
0 0

0 0 1 1 ]
 
 
 
 
 
 

 

  [B] = [d][N(x)] 

𝑁4𝑖−3 = 1 − 
𝑥

𝑙
 

𝑁4𝑗−3 = 
𝑥

𝑙
 

𝑁4𝑖 = 1 − 
𝑥

𝑙
 

𝑁4𝑗 = 
𝑥

𝑙
 

𝑁4𝑖−2 = 1 − 
3𝑥2

𝑙2
+ 

2𝑥3

𝑙3
  

𝑁4𝑖−1 = 𝑥 − 
2𝑥2

𝑙
+  

𝑥3

𝑙2
 

𝑁4𝑗−2 =
3𝑥2

𝑙2
− 

2𝑥3

𝑙3
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[𝐵] =

[
 
 
 
 
 
 
 
 
𝜕𝑁4𝑖−3

𝜕𝑥
0 0 0

𝜕𝑁4𝑗−3

𝜕𝑥
0 0 0

0 0 0
𝜕𝑁4𝑖

𝜕𝑥
0 0 0

𝜕𝑁4𝑗

𝜕𝑥

0
𝜕2𝑁4𝑖−2

𝜕𝑥2

𝜕2𝑁4𝑖−1

𝜕𝑥2
0 0

𝜕2𝑁4𝑗−2

𝜕𝑥2

𝜕2𝑁4𝑗−1

𝜕𝑥2
0

0
𝜕𝑁4𝑖−2

𝜕𝑥

𝜕𝑁4𝑖−1

𝜕𝑥
𝑁4𝑖 0

𝜕𝑁4𝑗−2

𝜕𝑥

𝜕𝑁4𝑗−1

𝜕𝑥
𝑁4𝑗 ]

 
 
 
 
 
 
 
 

 

[𝑁] =  [

0 0 0 0 0 0 0 0
0 𝑁4𝑖−2 𝑁4𝑖−1 0 0 𝑁4𝑗−2 𝑁4𝑗−1 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

]           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 


