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1 Introduction 

 
The study of the flow of fluid between parallel plates has generated a lot of research interests 
due to its numerous applications in industrial and engineering applications such as moving 
pistons, chocolate fillers, hydraulic lifts, electric motors, flow inside syringes and nasogastric 
tubes, compression, and injection, power transmission squeezed film and polymers 
processing. In such applications, the flow of fluid are performed as a result of the moving 
apart or the coming together of two parallel plates. Following the pioneer work and the basic 
formulations of on squeezing flows under lubrication assumption by Stefan [1], there have 
been increasing research interests and many scientific studies on these types of flow. In a past 
work over few decades, Reynolds [2] analyzed the squeezing flow between elliptic plates 
while Archibald [3] investigated the same problem for rectangular plates.  
                                                                                                                                                                                          
*Assistant Professor, Corresponding Author, Department of Mechanical Engineering, University of Lagos,  
Akoka, Lagos, Nigeria  mikegbeminiyi@gmail.com 

†Instructor, Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria 
mynotebook2010@yahoo.com 

‡M.Sc., Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria  
§Assistant Professor, Department of Works and Physical Planning, University of Lagos, Akoka, Lagos, Nigeria  
ljayesimi@unilag.edu.ng 

   Receive : 2017/09/16  Accepted : 2018/11/24 

M. G. Sobamowo * 
Assistant Professor  

   
  

A. A. Yinusa † 
Instructor 

 
 

K. C. Alaribe‡ 
M.Sc. 

 
 

L. O. Jayesimi§ 
Assistant Professor  

 

Analysis of Squeezing Flow of Viscous Fluid 
under the Influence of Slip and Magnetic Field: 
Comparative Studies of Different Approximate 
Analytical Methods 
The various industrial and engineering applications of flow of 
fluid between parallel plates have continued to generate 
renewed interests. In this work, a comparative study of 
approximate analytical methods is carried out using differential 
transformation,homotopy perturbation, Adomian decomposition, 
variation of parameter and variational iteration methods for the 
analysis of a steady two-dimensional axisymmetric flow of an 
incompressible viscous fluid under the influence of a uniform 
transverse magnetic field with slip boundary condition. From 
the results, it is established that, the result of DTM and VPM 
shows to be more convenient for engineering calculations 
compared to the HPM as it appears more appealing than the 
HPM.  Also, effects of pertinent flow, magnetic field and slip 
parameters are studied. By comparing the results of 
approximate analytical methods in this work with the numerical 
method using Runge-Kutta coupled with shooting method, the 
validity and the accuracy of approximate analytical solutions 
are established. 
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The earlier studies on squeezing flows were based on Reynolds equation which insufficiency 
for some cases has been shown by Jackson [4] and Usha and Sridharan [5].  
Therefore, there have been several attempts and renewed research interests by different 
researchers to proper analyze and understand the squeezing flows [5-15].  In the past efforts to 
analyze such flow process, Rashidi et al. [16] used homotopy analysis method (HAM) to 
develop analytical approximate solutions to study the unsteady two dimensional axisymmetric 
squeezing flow between parallel plates while Duwairi et al. [17] investigated effects of 
squeezing on heat transfer of a viscous fluid between parallel plates. Qayyum et al. [18] 
studied the squeezing flow of non-Newtonian second grade fluids and micro-polar models 
presenting effect on velocity profiles. Hamdan [19] analyzed the effect of squeezing flow on 
dusty fluids discussing squeeze effect on fluid flow. Mahmood et al. [20] investigated the 
effects of Prandtl’s number and Nusselt number on the squeezed flow and heat transfer over a 
porous surface for viscous fluids. Hatami and Jing [21] applied differential transformation 
method to study the natural convection of a non–Newtonian nanofluid between two vertical 
plates and Newtonian nanofluid between horizontal plates. Mohyud-Din et al. [22] 
investigated on heat and mass transfer analysis for the flow of a nanofluid between rotating 
parallel plates while Mohyud-Din and Khan [23] analyzed the nonlinear radiation effects on 
squeezing flow of a Casson fluid between parallel disks. Qayyum et al. [24] modeled and 
applied homotopy perturbation method to analyze the unsteady axisymmetric squeezing fluid 
flow through porous medium channel with slip boundary. Qayyum and Khan [25] presented 
the behavioral study of unsteady squeezing flow through porous medium using homotopy 
perturbation method. Mustafa et al. [26] presented their study on the heat and mass transfer in 
unsteady fluid flow under squeezed flow between two parallel plates using homotopy analysis 
method. In order to study the influence of magnefield on the sqeezing flow of non-Newtonian 
fluid, Siddiqui et al. [27] adopted homotopy perturbation method investigated the magnetic 
effect of squeezing viscous magnetohydrodynamics (MHD) fluid flow. Few years later, 
Domairry and Aziz [28] used homotopy perturbation method (HPM) to study the MHD 
squeezed flow between two parallel disks with suction or injection. Also,  the effect of 
squeeze on Copper-water and Copper-Kerosene nanofluid between two parallel plates 
subjected to magnetic field was studied by Acharya et al [29] using the differential 
transformation method (DTM).  Ahmed et al. [30] analyzed magneto hydrodynamic (MHD) 
squeezing flow of a Casson fluid between parallel disks. A year later, Ahmed et al. [31] 
investigated on MHD flow of an incompressible fluid through porous medium between 
dilating and squeezing permeable walls. The same year, Khan et al. [32] studied unsteady 
two-dimensional and axisymmetric squeezing flow between parallel plates. The same authors 
Khan et al. [33] MHD squeezing flow between two infinite plates while Hayat et al. [34] had 
earlier investigated the effect of squeezing flow of second grade fluid between two parallel 
disks. Khan et al. [35] analyzed unsteady squeezing flow of Casson fluid with 
magnetohydrodynamic effect and passing through porous medium while Ullah et al. [36] used 
homotopy perturbation method to present analytical solution of squeezing flow in porous 
medium with MHD effect.  Thin Newtonian liquid films squeezing between two plates were 
studied by Grimm [37]. Squeezing flow under the influence of magnetic field is widely 
applied to bearing with liquid-metal lubrication [38–41].  
Islam et al [42] studied squeezing fluid flow between the two infinite parallel plates in a 
porous medium channel.  In case of many polymeric liquids when the weight of molecule is 
high, then they show slip at the boundary. The no-slip boundary condition is not applicable in 
this case. In many cases such as thin film problems, rarefied fluid problems, fluids containing 
concentrated suspensions, and flow on multiple interfaces, the no-slip boundary condition 
fails to work. Navier [43], for the first time, proposed the general boundary condition which 
demonstrates the fluid slip at the surface.  
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The difference of fluid velocity and velocity of the boundary is proportional to the shear stress 
at that boundary. The proportionality constant is named the slip parameter having length as its 
dimension. The slip condition is of great importance especially when fluids with elastic 
character are under consideration [44]. Newtonian fluid was considered by Ebaid [45] to 
study the effects of magnetic field and wall slip conditions on the peristaltic transport in an 
asymmetric channel. It has great importance in medical sciences, particularly in polishing 
artificial heart valves and internal cavities in many manufactured parts achieved by 
embedding such fluids with abrasives [46]. The influence of slip on the peristaltic motion of 
third-order fluid in asymmetric channel is studied by Hayat et al. [47]. The effects of slip 
condition on the rotating flow of a third grade fluid in a nonporous medium are investigated 
by Hayat and Abelman [48]. Their work was extended to a porous medium and obtaining the 
numerical solutions for the steady magnetohydrodynamics flow of a third grade fluid in a 
rotating frame is presented by Abelman et al. [49].  The past efforts in analyzing the 
squeezing flow problems have been largely based on the applications of approximate 
analytical methods.  In this work, comparative analyses of DTM, HPM, ADM, VPM and 
VIM are carried out for MHD squeezing flow with slip boundary condition between two 
infinite plates approaching each other slowly. Also, the effects of the various flow parameters 
were investigated. 
 
2 Problem Formulation 

 
Consider, a squeezing flow of an incompressible Newtonian fluid with constant density ρ and 
viscosity μ, squeezed between two large planar parallel plates separated by a small distance 
2h  approaching each other with a low constant velocity v  in the presence of a magnetic field, 
as shown in Figure (1). 
Assume that the flow is quasi steady, the Navier-Stokes equations governing such flow when 
inertial terms are retained will be: 
 

.v 0 

                                                                                     

(1)

   v
.v v .T v B B

t
          

                                                              (2) 

Where ׏ denotes the material time derivatives, Tis the Cauchy stress tensor given by 

T pI A    with  v + v .B
t

A   is the total magnetic field given by 0 0B = B .Bb and b 

represent the imposed and induced magnetic fields, respectively. The modified Ohm’s law 
and Maxwell’s equations. In the absence of displacement currents, are: 

 J = v B , .B 0E    

                                                   

(3) 

                                                 

B
B = J, curlm E

t
 

 


                                                      (4)                        

Here J  is the electric current density,  represents the electrical conductivity, E the electric 
field, and m  the magnetic permeability. If  , m  and  are constant, b is negligible as 

compared to 0B , B  is perpendicular to v  so that the Reynold number is small with no electric 

field in the fluid flow region and then the magneto hydrodynamic force involved can be 
written as: 

2
0J B= B v                                                               (5) 
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Figure 1  Model of the squeezing flow of viscous fluid under transverse uniform magnetic field 

 
Assuming that the plates are non-conducting and the magnetic field is applied along the z-
axis. The gap distance 2h  between the plates changes slowly with time t for small values of 
the velocity v so that it can be taken as constant. An axisymmetric flow in cylindrical 

coordinates  , ,r z  with z-axis perpendicular to plates and z h   at the plates. For axial 

symmetry, v  is represented by   ,0,r zv v v . In view of negligible body forces with no 

tangential velocity, Navier-Stokes equation [1, 6, 10] in cylindrical coordinates are: 

2
0v B vr r

p

r z
   

    
 

                                          (6) 

 vr

p
r

z r r

 
   

 
                                                (7) 

where  

  v v
, z rr z

r z

 
  

 
                                              (8) 

Introducing the stream function    ,r z , we have 

1 1
v ,  v .r zr z r r

  
  

 
                                       (9) 

Eliminating p from (9), we have 

 
 

2 2 2 2
2 0

2

, / B

,

E r
p E

r z r r z

    
      

   
                                     (10) 

where 
2 2

2
2 2

1
E

r r r z

  
  
  

                                                  (11) 

Using the transformation     2,r z r f z  , (10) can be written as 

         
2

'' '''0B
2 0ivf z f z f z f z

 
 

   ,                                        (12) 

Subject to the slip boundary conditions 

   

     

''

' ''

0 0,   0 0,

,   
2

f f

v
f h f h f h

 

 
                                                           (13) 
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The non-dimensional parameters are * */ / 2,  / h,  R= h/ /v, F g v z z    and 0m=B /h   . 

Omitting the * for the sake of conveniences, (12) and (13) becomes 

         2 '' ''' 0ivF z m F z RF z F z                                         (15) 

And the boundary conditions are 

   
     

''

' ''

0 0,   F 0 0,

1 1,   F 1 1

F

F F

 

 
                                        (16) 

With / h  and R, m are Reynolds and Hartmann numbers respectively [50]. 

 
3 Approximate Analytical Methods of Solution: Differential Transform Method 

 
The differential transform method has widely been used to solve both singular and non-
singular perturbed boundary values problems. It gives analytical solution to differential or 
integral solutions in the form of a polynomial by transforming each term in the differential 
equation or integral into a recursive form or relation of the equation which follows an iterative 
procedure for obtaining analytical series solutions of differential equation. 

The basic definitions of the method is as follows 

 If ( )u x  is analytic in the domain T, then it will be differentiated continuously with respect to 
space x. 

( )
( , )

p

p

d u x
x p

dx


  
for         all x T                              (17) 

For ix x , then ( , ) ( , )ix p x p   , where p belongs to the set of non-negative integers, 

denoted as the p-domain. Therefore Eq. (17) can be rewritten as  

( )
( ) ( , )

i

p

i p

x x

d u x
U p x p

dt




 
   

 
         (18) 

Where pU  is called the spectrum of ( )u x  at ix x  

    can be represented as ( )u x can be expressed by Taylor’s series, the ( )u x If   

       
 

( ) ( )
!

p

i

p

x x
u x U p

p

  
  

  
                                                   (19) 

Where Eq. (19) is called the inverse of )(kU  using the symbol ‘D’ denoting the differential 
transformation process and combining Eq. (18) and Eq. (19), it is obtained that 
 

  1

0

( ) ( ) ( )
!

p

i

p

x x
u x U p D U p

p






 
  

  
                                                 (20) 



Iranian Journal of Mechanical Engineering                    Vol. 20, No. 2, Sep. 2019  
 
10

3.1 Operational properties of differential transformation method 
 

If ( ) ( )u x and v x  are two independent functions with space (x) where ( )U p  and ( )V p  are the 
transformed function corresponding to ( )u x  and ( )v x , then it can be shown from the 
fundamental mathematics operations performed by differential transformation that. 
 

i. If ( ) ( ) ( ),z x u x v x      then ( ) ( ) ( )p U p V p    

ii. If ( ) ( ),z x u x   then ( ) ( )Z p U p  

iii. If 
( )

( ) ,
n

n

d u x
z x

dx
   then  ( ) ( 1) ( 2)( 3)...( ) ( )p p p p p n U p n        

iv. If ( ) ( ) ( ),z x u x v x then 
0

( ) ( ) ( )
p

r

p V r U p r


    

v. If ( ) ( )mz x u x , then 1

0

( ) ( ) ( )
p

m

r

p U r U p r



    

vi. If ( ) ( ) ( ),z x u x v x    then 
0

( ) ( 1) ( 1) ( )
p

r

p r V r U p r


      

vii. If 
( )

( ) ,
n

m
n

d u x
z x x

dx
   then          

0

( ) 1 1 2 3 ...
p

l

p l m p l p l p l p l n U p l n


               

viii. If 
3

3

( ) ( ))
( ) ,

du x d u x
z x

dx dx
   then         

0

( ) 1 2 3 3
p

l

Z p U p l l l l U l


       

ix. If 
2

2

( ) ( ))
( ) ,

du x d u x
z x

dx dx
   then         

0

( ) 1 1 1 2 2
p

l

Z p p l U p l l l U l


         

x. If 
2

( )
( )

du x
z x

dx
   
 

  then        
0

( ) 1 1 1 1
p

l

Z p p l U p l l U l


        

xi. If 
( )

( ) ,
du x

z x u
dx

   then      
0

( ) 1 1
p

l

Z p U p l l U l


     

If 

22

2

( ))
( ) ,

d u x
z x

dx

 
  
 

  then          
0

( ) 1 2 2 1 2 2
p

l

Z p p l p l U p l l l U l


           

 
4 Application of the differential transform method to the present problem 

  
The differential transform of (15) and (16) is given by 
 

            

       

2

0

1 2 3 4 4 1 2 2

3 2 1 3 0
k

l

k k k k F k m k k F k

R k l k l k l F l F k l


         

 
         

 


                        (21) 

With differential transformed boundary conditions 
 

       0 0,  1 ,  2 0,  3 ,F F a F F b                                              (22) 
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( 1) [ 1] ( 1)( 2) [ 2]k F k k k F k        

 
Where a and b are unknowns to be determined later using the boundary conditions of Eq. 
(16b).  

Using Eqs. (21) and (22), the value of   , 1,2,3,4,5,...19,20.i iF  are  

 

  04F                                                                                                                                         

 

   21
5

20
F bm abR 

                                                                                                                
 

  06F 
 

 

   4 2 2 2 21
7 6 4 3

840
F bm b R abm R a bR   

 
 

  08F 
 

 

 
6 2 2 4 2 2 2 2 2 3 372 9 96 23 15

60
9

480

bm b m R abm R ab R a bm R a bR
F

     
  
 


 

 

  010F 
 

 

 

8 2 4 6 3 2 2 2 2

2 4 2 2 2 3 3 2 3 4 4

414 16 1296 1716

86 1446 176 105

6652800
11

bm b m R abm R b R ab m R

a bm R a b R a bm R a bR
F

     
 

     
  
 



 
  012F 

 
 

 

10 2 6 8

3 2 2 2 4 2 2 6 2 3 3

2 2 2 3 3 4 3 3 2 4 4 2 4 5 5

1
( 1896 25

1037836800

43848 14892 230 66456

35424 950 23580 1689 94

1

5 )

3

bm b m R abm R

F b m R ab m R a bm R ab R

a b m R a bm R a b R a bm R a bR

    
 

     
      
 



 

 

  014F   
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 

12 2 8 10 3 4 2

2 6 2 2 8 2 4 3 3 2 3

2 2 4 3 3 6 3 2 3 4 3 2 2 4

4 4 4 4 2 5 5 2

1
( 7974 36 703296

217945728000

98544 505 1362096 2874096

427716 3480 2540304 753936

12139 428310 19524

15

bm b m R abm R b m R

ab m R a bm R b R ab m RF

a b m R a bm R a b R a b m R

a bm R a b R a bm R

  

    
   

 



5 6 610395 )a bR

 
 
 
 
 
 
 
   

 

  016F 

 

 

 

14 2 10 12 3 6 2

2 8 2 2 10 2 4 2 3 3 4 3

2 2 6 3 3 8 3 4 4 2 3 2 4

3 2 4 4

1
( 32472 49 8496576

59281238016000

574104 973 93783744 61494336

3844560 10045 151160256 137564928

1205044 73

1

8 5

7

bm b m R abm R b m R

ab m R a bm R b m R ab m R

F a b m R a bm R ab R a b m R

a b m R

  

    

   

 



4 6 4 3 3 5 4 2 2 5

5 4 5 5 2 6 6 2 6 7 7

79 90984960 17320920

177331 8711640 264207 135135 )

a bm R a b R a b m R

a bm R a b R a bm R a bR

 

   

 
 
 
 
 
 
 
 
 
 
 

 

  018F 

 

 

 

16 2 12 14 3 8 2

2 10 2 2 12 2 4 4 3 3 6 3

2 2 8 3 3 10 3 5 4 4 2 4

1
( 130686 64 89650368

20274183401472000

3121068 1708 3168258624 978609024

29567250 24640 4090611456 12617990784

37

1

91

9

03

bm b m R abm R b m R

ab m R a bm R b m R ab m R

a b m R a bm R b R ab m RF

  

    

   
2 3 4 4 3 2 6 4 4 8 4 2 4 5

3 3 2 5 4 2 4 5 5 6 5 4 3 6

5 2 2 6 6 4 6 6 2 7 7 2 7

7312 141160488 208054 11321698752

6076050048 354431586 1038016 3295339200

436149036 2924172 198236430 4098240 2027

a b m R a b m R a bm R a b R

a b m R a b m R a bm R a b R

a b m R a bm R a b R a bm R

  

   

     8 8025 )a bR

 
 
 
 
 
 
 
 
 
 
 

  

  020F   

According to the definition of DTM, the solution is  

 

                 
           
         
   

2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18

19 20

0 1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18

19 20

F z F zF z F z F z F z F z F z F

z F z F z F z F z F z F

z F z F z F z F z F

z F z F

       

      

    

 

       

     

    

 

                 (23) 

 
5  Method of solution by homotopy perturbation method 
 
It is very difficult to develop a closed-form solution for the above non-linear equation (19). 
Therefore, recourse has to be made to either approximation analytical method, semi-numerical 
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method or numerical method of solution. In this work, homotopy perturbation method is used 
to solve the equation.  
 
5.1 The basic idea of homotopy perturbation method 
 
In order to establish the basic idea behind homotopy perturbation method, consider a system 
of nonlinear differential equations given as 

    0,A U f r r                       (24) 

with the boundary conditions 

, 0,
u

B u r


 
   

         (25) 

where A is a general differential operator, B is a boundary operator,  f r  a known analytical 

function and  is the boundary of the domain   
The operator A can be divided into two parts, which are L and N, where L is a linear operator, 
N is a non-linear operator. Eq.(24) can be therefore rewritten as follows 

      0L u N u f r            (26) 

By the homotopy technique, a homotopy    , : 0,1U r p R   can be constructed, which 

satisfies 

             , 1 0, 0,1H U p p L U L U p A U f r p                   (27) 

Or 

           , 0H U p L U L U pL U p N U f r                (28) 

In the above Eqs. (27) and (28),   0,1p  is an embedding parameter, ou is an initial 

approximation of equation of Eq. (24), which satisfies the boundary conditions. 

Also, from Eqs. (27) and (28), we will have 

     ,0 0oH U L U L U            (29) 

      ,0 0H U A U f r             (30) 

The changing process of p from zero to unity is just that of  ,U r p from  ou r to  u r . This 

is referred to homotopy in topology. Using the embedding parameter p as a small parameter, 
the solution of Eqs. (27) and (28) can be assumed to be written as a power series in p as given 
in Eq. (28) 

2
1 2 ...oU U pU p U             (31) 

It should be pointed out that of all the values of p between 0 and 1, p=1 produces the best 
result. Therefore, setting 1p  , results in the approximation solution of Eq.(24) 
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1 2
1

lim ...o
p

u U U U U


              (32) 

The basic idea expressed above is a combination of homotopy and perturbation method. 
Hence, the method is called homotopy perturbation method (HPM), which has eliminated the 
limitations of the traditional perturbation methods. On the other hand, this technique can have 
full advantages of the traditional perturbation techniques. The series Eq.(32) is convergent for 
most cases. 
 

5.2 Application of the homotopy perturbation method to the present problem 
 
According to homotopy perturbation method (HPM), one can construct an homotopy for Eq. 
(16) as 

        2, 1 " "'iv ivH z p p p RF FFmF F      
    

                                                   (33)
 

Using the embedding parameter p as a small parameter, the solution of Eqs. (16) can be 
assumed to be written as a power series in p as given in Eq. (33) 

 
2 3

1 2 3 ...o p p pF F F F F                   (34) 

On substituting Eqs. (34) and into Eq.(33) and expanding the equation and collecting all terms 
with the same order of p together, the resulting equation appears in form of polynomial in p . 
On equating each coefficient of the resulting polynomial in p to zero, we arrived at a set of 
differential equations and the corresponding boundary conditions as 

 
 0

0: 0,ivp F               " ' "
0 0 0 0 00 0,   0 0, 1 1,   1 1F F F F F                        (35) 

 1 2 " '''
1 0 0 0: 0,ivp m RF F F F                     " ' "

1 1 1 1 10 0,   0 0, 1 0,   1 1F F F F F       
 
    (36) 

 2 2 " ''' '''
2 1 1 0 0 1: 0,ivF F Fp m R FRF F        

           " ' "
2 2 2 2 20 0,   0 0, 1 0,   1 1F F F F F        (37) 

           3 2 " ''' ''' ''' " ' "
3 2 2 0 1 1 0 2 3 3 3 3 3: 0, 0 0,   0 0, 1 0,   1 1ivF F F F FF F F F Fp m R R F FR F                    

 

 (38) 

 

         

4 2 " ''' ''' ''' ''' '''
4 3 3 0 3 0 2 1 1 2 0 3

" ' "
4 4 4 4 4

: 0

0 0,   0 0, 1 0,   1 1

ivF F F F F F F F F F F F

F

p

F F

R

F

R R R

F

m R



      

   

           

    
                           (39) 

 

         

5 2 " ''' ''' ''' ''' ''' '''
5 4 3 0 4 0 3 1 2 2 1 3 0 4

" ' "
5 5 5 5 5

: 0

0 0,   0 0, 1 0,   1 1

ivp m R R R R RF F F F F F F F F F F F F F

F F F F

R

F

       

   

             

    
     

          (40) 

On solving the above Eqs. (35-40), we arrived at 

   
 

3

0

3 2 1

2 3 1

z z
F z



 






             
                                       (41) 
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   
     

 
   

 
   

 

 
   

2

2 2
2

5 7 3
1 2 2

2

2 2

2

2 2

90 2 160 63

3 1 3 1 3 19 2 13 3 1

3 1 3 2 12 3 1 2 3 1 36 2 112 9

3 1 3 1 3 1

90 2 160 63

3 1 3 1 3 11

3 2 1 1

Rm R

Rm R
z z z z

Rm R

Rm

F

R




  
   

  




  



  
   

                                  

 
  
    






 
   

 
   

2

2 2
2

2 2

9 2 13 3

3 1 3 1 2 3 136 2 12 9

3 1 3 1 2 3 1

Rm R
z z

Rm R


  

  

 
 
                            

        (42) 

In the same manner, the expressions for          2 3 4 5 6, , , , ...z z zF F F F Fz z     were obtained. 

However, they are too large expressions to be included in this paper.

 
    Setting 1p  , results in the approximation solution of Eq. (24) 

             1 21 3 4lim ...op
F z F z F z F z F z FF z z


                             (43)                        

 
 
6.1 The basic idea of Adomian decomposition method (ADM) 
 
Governing equations in terms of nonlinear differential equations are represented generally as  

 0Lf Nf Rf g    .          (44) 

Where f is the function to be decomposed, Lf is the highest linear part, Nf is the nonlinear part, 
Rf is the remainder and g is a known function. 

The Adomian solution may be obtained from  

1 1 1
0

0 0 0
n n n

n n n

f f L R f L A L g
  

  

  

         
   

           (45) 

Where nA is the Adomian polynomial function as a result of the nonlinear term present in the 

model 

   
0 0

1

!

n nn n
i i

n n n
i i

d d
A f i f i

n d d



 
  

            
          (46) 

6.2 Application of ADM to the present problem 
 
Given that the governing equation is 

       
4 2 3

2
4 2 3

d d d
0

dz dz dz
F m F zRFz z z F    

With slip boundary conditions expressed as; 
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       0 0, '' 0 0, 1 1, 1 ''F F F F yF     

For an order four differential equation, the leading term may be expressed with its 
corresponding constants as; 

2
0

31 1

2 6
F a bz z d zc     

and  

      

      

2
2

2

2

1

0

0
2

0 0

2

0 0

d

dz

d

dz

1

1

n

z z z z

n

F i L z A i

F i z A i

m F i R

dz dz dzm F i R dz










  
    

  
      

  







   
  (47) 

The constants will be obtained by solving the equations resulting from the use of the 
boundary conditions simultaneously. There is also need to generate an Adomian polynomial 
for the last term because it is nonlinear. For accuracy sake, 10 Adomian polynomial were 
generated as shown below: 
 

   

       

           

               

                   

 

3

0 0 03

3 3

1 0 1 1 03 3

3 3 3

2 0 2 1 1 2 03 3 3

3 3 3 3

3 0 3 1 2 2 1 3 03 3 3 3

3 3 3 3 3

4 2 2 1 3 3 1 4 0 0 43 3 3 3 3

3

5 0

d

d

d d

d d

d d d

d d d

d d d d

d d d d

d d d d d

d d d d d

d

d

A F z F z
z

A F z F z F z F z
z z

A F z F z F z F z F z F z
z z z

A F z F z F z F z F z F z F z F z
z z z z

A F z F z F z F z F z F z F z F z F z F z
z z z z z

A F z
z



 

  

   

    

                      

                           

               

3 3 3 3 3

5 5 0 3 2 2 3 1 4 4 13 3 3 3 3 3

3 3 3 3 3 3 3

6 0 6 6 0 1 5 5 1 3 3 4 2 2 43 3 3 3 3 3 3

3 3 3 3

7 1 6 6 1 2 5 5 23 3 3 3

d d d d d

d d d d d

d d d d d d d

d d d d d d d

d d d d

d d d d

F z F z F z F z F z F z F z F z F z F z F z
z z z z z

A F z F z F z F z F z F z F z F z F z F z F z F z F z F z
z z z z z z z

A F z F z F z F z F z F z F z F z
z z z z

    

      

                   

                                   

             

3 3 3 3

4 3 3 4 0 7 7 03 3 3 3

3 3 3 3 3 3 3 3 3

8 2 6 6 2 5 3 3 5 4 4 1 7 7 1 0 8 8 03 3 3 3 3 3 3 3 3

3 3 3

9 0 9 9 0 3 6 63 3 3

d d d d

d d d d

d d d d d d d d d

d d d d d d d d d

d d d

d d d

F z F z F z F z F z F z F z F z
z z z z

A F z F z F z F z F z F z F z F z F z F z F z F z F z F z F z F z F z F z
z z z z z z z z z

A F z F z F z F z F z F z F z
z z z

   

        

                             
3 3 3 3 3 3 3

3 5 4 4 5 2 7 7 2 1 8 8 13 3 3 3 3 3 3

d d d d d d d

d d d d d d d
F z F z F z F z F z F z F z F z F z F z F z F z F z

z z z z z z z
     

                 
(48) 

Substituting Equation (48) into (47) and performing the simple iteration until a convergence is 
reached, the term by term solution is obtained as; 

2
0

31 1

2 6
F a bz z d zc                                                   (49) 

5 6 7
4

1 1 / 24
120 720 5040

bz cz dz
dF R az
 

     
 

                                      (50) 



Analysis of Squeezing Flow of Viscous Fluid under the Influence...  17

3 11 2 10 2 2
9

2 2
8 7

2

6 2 5

1 / 9
1108800 100800 2520 4032

1 / 8 1 / 7
840 504 180 240

240 120

Rd z cRd z bRd c Rd
z

aRd bRdc aRdc b Rd
R z z

aRdbz a R z

F

d

  
      

  
                   
 
   
 

                        (51) 

 

2 2 22 3

2 4 15 2 3 14 2
2 13

2 2

2 3 2 2

3

23

985600 7983360

1051 1051
1 / 13 1 / 45

217945728000 14529715200 7920 72

1320 22680 36288

19 31

6652800 332
1 / 12

c R dbR d

R d z cR d z Rd c Rd
bRd z

Rd bRd c Rd

aR d bR cd

F R

 
 
 
          
 

        





 

 

   

2
2

12

2 2

2 2 2
2

2 2

1 / 45
6400 1980 72

1 / 20 1 / 12

5940 990 6720 4032

13
1 / 45

604800 720 72

1 / 20 1 / 12 1 / 6 1 / 8
1 / 11

1440 4320

cR c Rd
bRd

z
Rd aRd bRdc Rd aRd bRdc
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The final ADM series solution after using the boundary conditions to obtained the constants 
becomes  

   
0i

F z F i




                                                              (53) 
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7.1 The basic idea of Variation of parameter method (VPM) 
 
Nonlinear differential equations are represented generally as  

0Lf Nf Rf g    .                                                 (54) 

Where f is the function to be decomposed, Lf is the highest linear part, Nf is the nonlinear part, 
Rf is the remainder and g is a known function. 

The VPM iteration equation is given as; 

         1 0
dn n n nf f Rf s Nf s g s s


                                     (55) 

with 
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n
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

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


                                                              (56) 

Where  is called the Wronskian parameter and n is the order of the differential equation 
under consideration.  
 
 
7.2 Application of VPM to the present problem 
 
Given that the governing equation is 
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With slip boundary conditions expressed as; 

       0 0, '' 0 0, 1 1, 1 ''F F F F yF                             (58) 

Applying the principle of VPM, 
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Where the leading term is obtained from the single integration of the highest derivative as 

2
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2 6
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Hence, the general series becomes; 
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The term by term solution becomes; 
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The final VPM series solution after using the boundary conditions to obtained the constants 
becomes  

   
0i

F z F i
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                                                           (65) 

8.1 The basic idea of Variation of parameter method (VIM) 
 
Nonlinear differential equations are represented generally as  
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0Lf Nf Rf g    .                                                    (66) 

Where f is the function to be decomposed, Lf is the highest linear part, Nf is the nonlinear part, 
Rf is the remainder and g is a known function. 

The VIM iteration equation is given as; 
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with 
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Where  is called the Wronskian parameter and n is the order of the differential equation 
under consideration.  
 
7.2 Application of VIM to the present problem 
 
Given that the governing equation is 
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With slip boundary conditions expressed as; 

       0 0, '' 0 0, 1 1, 1 ''F F F F yF                             (70) 

Applying the principle of VPM, 
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Where the leading term is obtained from the single integration of the highest derivative as 
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Hence, the general series becomes; 
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The term by term solution becomes; 
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The final VPM series solution after using the boundary conditions to obtained the constants 
becomes  

   
0i
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                                                       (77) 

5 Results and Discussion 
 

The above analysis shows a comparative study of approximate analytical methods of 
differential transformation and homotopy perturbation methods for the analysis of a steady 
two-dimensional axisymmetric flow of an incompressible viscous fluid under the influence of 
a uniform transverse magnetic field with slip boundary condition.  Using DTM, a closed form 
series solution was obtained as it provides excellent approximations to the solution of the non-
linear equation with higher accuracy than HPM. Also, the DTM shows to be more convenient 
for engineering calculations compared with the HPM as it appears more appealing than the 
HPM. However, due to the higher accuracy of DTM than HPM as shown the table (1), the 
solution of DTM is used to carry out the parametric study shown in Figs. (2). 
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Although, the DTM is somehow easier and straight-forward as compared to HPM, there is a 
rigour in developing the recursive relations or differential transforms coupled with the search 
for included unknown parameter that will satisfy second the boundary condition lead to 
additional computational cost in the generation of the solution to the problem using DTM. 
This drawback is not only peculiar to DTM, other approximate analytical methods such as 
HAM, ADM, VIM, DJM, TAM also required additional computational cost and time for the 
determination of included unknown parameter that will satisfy second the boundary condition. 
Also, the DTM has its own operational restrictions that severely narrow its functioning 
domain as it is limited to small domain. Using DTM for large or infinite domain is 
accompanied with either the application of before-treatment techniques such as domain 
transformation techniques, domain truncation techniques and conversion of the boundary 
value problems to initial value problems or the use of after-treatment techniques such as Pade-
approximants, basis functions, cosine after-treatment technique, sine after-treatment technique 
and domain decomposition technique. This is because DTM was initially established for 
initial value problems. Amending the method to boundary value problems especially for large 
or infinite domains boundary value problems leads to unknown parameter that will satisfy 
second the boundary condition. This drawback in the other approximation analytical methods 
is not experienced in HPM as such tasks of before- and after-treatment techniques are not 
required in HPM as it easily applied to the boundary value problems without any included 
unknown parameter in the solution as found in DTM. 

 

Figure 2 Effects of magnetic parameter on the flow behavior of the fluid under the influence of slip condition 
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Figure 3  Effects of magnetic field parameter on the flow behavior of the fluid for no-slip condition 

 
Figure 4   Effects of slip parameter on the flow behavior of the fluid  

 
Figure 5  Effects of Reynolds number on the flow behavior of the fluid under the influence of slip condition 
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In order to get an insight into the problem, the effects of pertinent flow, magnetic field and 
slip parameters on the velocity profile of the fluid are investigated.  Fig. (2) shows the effects 
of magnetic field parameter, Hartmann number ݉	 on the velocity of the fluid under the 
influence of slip condition, while Fig. (3) depicts the influence of the magnetic field 
parameter on the velocity of the fluid under no-slip condition. It could be inferred from the 
figures that the velocity of the fluid increases with increase in the magnetic parameter under 
slip condition while an opposite trend was recorded during no-slip condition as the velocity of 
the fluid decreases with increase in the magnetic field parameter under the no slip condition. 
Fig. (4) shows the influence of the slip parameter ߛ on the fluid velocity. By increasing ߛ, it is 
observed that the velocity of the fluid increases. Fig. (5) presents the effects of Reynold’s 
number on the velocity of the fluid. It is observed from the figure that by increasing the	value	
R, the velocity of the fluid decreases.  
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