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1 Introduction 
 
In rotating machinery such as turbojet engines, compressors, and turbines, the rotors often 
encounter large forces transmitted to the support structure. The problem becomes more severe 
as machinery is designed to be lighter and, hence, more flexible. Large force transmissibility 
may be due to several causes and may be roughly grouped under the headings of synchronous 
and non-synchronous response. Synchronous response is usually associated with unbalance in 
the rotor. This unbalance may result from either the manufacturing process or the assembly of 
the components. Even if a rotor is well balanced initially, the balance degrades with rotor use. 
Thermal gradients can cause warping of the shaft. Erosion of compressor or turbine blades 
can alter the balance of the rotor. Therefore, in the design of machinery provisions should be 
made so that the increase of unbalance with operation will not overload the bearings or cause 
excessive rotor amplitudes.  
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The Effect of Support Parameters on the 
Force Transmissibility of a Flexible Rotor  
Rotating machinery support design with the aim of reducing 
the force transmitted to the foundation has significant 
importance regarding the various applications of these 
machineries. In this paper presents a rapid approximate 
method for calculating the optimum support flexibility and 
damping of flexible rotors to minimize force transmissibility 
in the vicinity of the rotor first critical speed. First, the 
governing equations for the Jeffcott rotor model mounted on 
flexible supports are derived and the optimal parameters for 
the supports have been analytically achieved. Next with 
consideration of the complexity and tedious of the analytic 
equations, a numerical algorithm for determination of the 
optimal support design parameters is introduced which may 
be applied to any rotor model regardless of the model 
complexity and number of degrees of freedom. The simulation 
results show the effect of optimal parameters on the 
considerable reduction of the force transmitted to the 
foundation. The method has the advantage of being quickly 
and easily applied and can reduce analysis time by 
eliminating a time consuming search for the approximate 
optimum damping using more exact methods.
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A large body of knowledge and sophisticated analytical methods exists for analyzing the 
unbalance response and stability [1-3]. Barrett et al. presented the effects of bearing support 
flexibility on rotor stability and unbalance response [4]. Gunter examined the influence of 
flexible damped supports on rotor amplitudes and forces transmitted over a speed range 
encompassing several critical speeds. An oil squeeze-film damper support was then designed 
to provide the required damping at the assumed unbalance conditions [5]. Ishida et al. studied 
the passive vibration control of nonlinear rotor systems using a dynamic damper. The 
Newton-Raphson method is used to determine the parameters of the dynamic damper for the 
nonlinear rotor, and passive vibration control utilizing the dynamic damper is achieved in the 
nonlinear rotor system [6].  
The successful design of rotor-bearing system needs to be analyzed with respect to the 
optimal parameters of the dynamic support [7-9]. Natraj and Ashrafiuon studied the effect of 
rotor spin speed and the unbalance value on the optimal value of the bearing parameter. They 
derived analytical formulas based on the analysis of two-degree-of-freedom systems [10]. A. 
E1-Shafei et al. presented a study of the optimal design of SFDs for multi-mode rotors. The 
optimal design program obtained the best possible damper parameters for a given rotor to 
satisfy the minimization requirements for maximum vibration amplitude function [11]. Lin 
and Cheng studied the optimal design of complex flexible rotor support systems. Optimization 
using system strain energy is shown to be a convenient way to handle such systems. Multiple 
constraints such as the damped critical speeds, limitations on transmitted forces and the 
amplitudes of the deflection of shafts and disks, and stability considerations, are used to meet 
the engineering requirements [12].  
A variety of new techniques and applications of optimization have been developed over the 
past years. Because of the complexity of rotor bearing system analysis and time consuming 
nature of process, an optimization procedure need to be employed that the design would be 
time-efficient and find the satisfactory design parameters to meet particular performance 
requirements. On the other hand, there is a range of support damping and stiffness values 
which will improve stability and minimizing the rotor amplitude. At present, there is a lack of 
information available in the literature on the support design in order to reduce force 
transmitted. It is, therefore, highly desirable to have an easily applied method to obtain an 
estimate of the optimum bearing damping for forces transmitted when operating above the 
first critical speed. The purposes of the current research are to evaluate the influence of 
flexible damped supports on rotor amplitudes and forces transmitted, and demonstrate design 
procedure for rotor model regardless of the model complexity and number of degrees of 
freedom. An analytic study was undertaken to determine the influence of flexible supports on 
the synchronous unbalance response of the single-mass Jeffcott rotor, and to optimize the 
support system characteristics so as forces transmitted. The approach method of the tuned 
damper support system is similar to that employed by Gunter [5] for minimizing the rotor 
amplitude. Although, the optimization procedure may be readily extended to more complex 
rotor-bearing systems by using the proposed outlined flow chart. Simulation shows that the 
system optimization design can effectively improve the transmitted force.  
 
2   Flexible Rotor Dynamics Equation 
 
A typical rotating system is composed of various components, such as rotors, disks, bearings 
and supports. The dynamic response of a rotor-bearing system can be obtained by the set of 
linear differential equations from the Lagrangian method. The system parameters including 
the inertia properties of rigid disk, stiffness of rotating shaft, coefficients of bearing and 
supports all of which have significant influence on the dynamic characteristics of the rotor-
bearing system.  
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In this investigation, a typical Jeffcott rotor is considered to be mounted in linearized, flexible, 
damped supports. Figure (1) represents the single-mass Jeffcott rotor mounted in damped 
elastic supports. In the Jeffcott model, the shaft is considered as a massless elastic member 
and the rotor mass is concentrated in a disk mounted at the center of the span. The shaft is 
supported in linear bearings which are mounted in damped flexible supports. The symmetric 
rotor system may be described for dynamic simulation by six coordinates or independent 
degrees of freedom. The support motion of either end of the rotor is given by the absolute 
coordinates (		ܺ௔, 	ܻ ௔) and the bearing motion is denoted by (		 ௝ܺ , 	ܻ ௝) in the fixed coordinate 
system. The rotor motion at the mid-span is described in the coordinate system by (		ܺௗ, 	ܻ ௗ). 
The support and bearing characteristics are assumed to be symmetric to simplify the analysis 
of this rotor-bearing system. Neglecting rotor acceleration and the disk gyroscopic, the 
governing equations of motion for the rotor, bearings, and support system in complex notation 
reduce to the following 

ܯ )1( ሷܼ ൅ ܥ ሶܼ ൅ ܼܭ ൌ  ܨ

Where ܯ, C	and ܭ are the system mass, damping coefficient and stiffness matrices 
respectively, can be represented by: 
 

ܯ )2( ൌ ൥
݉௔ 0 0
0 ݉ௗ 0
0 0 0

൩ , ܥ ൌ ൥
ܿ௔ ൅ ܿ௕ 0 െܿ௕
0 ܿ௦ 0
െܿ௕ 0 ܿ௕

൩ , ܭ ൌ ൥
݇௔ ൅ ݇௕ 0 െ݇௕

0 ݇௦ െ݇௦
െ݇௕ െ݇௦ ݇௦ ൅ ݇௕

൩ 

 
in which, Mୢ and Mୟ are the disk and support masses respectively. Damping and stiffness 
coefficients for the rotor shaft, bearings and supports are denoted by cୱ, kୱ and cୠ, kୠand 
cୟ, kୟ , respectively.  
The rotor displacement vector, Z and Force vector, F according to the rotor model become 

ܨ )3( ൌ ൝
0

݉݁߱ଶ

0
ൡ ݁௜ఠ௧ , ܼ ൌ ൝

௔ݖ
ௗݖ
௝ݖ
ൡ 

 
After the initial transient motion has damped out, the steady-state unbalance response may be 
assumed ܼ௞ ൌ  ௞ is in general complex. The differential equations ofܣ ௞݁௜ఠ௧ in whichܣ
motion may be reduced to a set of algebraic equations for the determination of the rotor 
steady-state motion. It is assumed that the damping coefficient cୠ is equal to zero for 
simplicity. This assumption may be suitable for rolling bearing in common engineering 
practice rotordynamics, therefore one can write.  

)4( 

ሺെ݉௔߱ଶ ൅ ݅	ܿ௔߱ ൅ ݇௔ ൅ ݇௕ሻܣ௔ െ ݇௕ܣ௝ ൌ 0

ሺെ݉ௗ߱ଶ ൅ ݅	ܿ௔߱ ൅ ݇௦ሻܣௗ െ ݇௦ܣ௝ ൌ ݉ௗ݁	߱ଶ

െ݇௕ܣ௔ െ ݇௦ܣௗ ൅ ሺ݇௕ ൅ ݇௦ሻܣ௝ ൌ 0

 

 
In order to simplicity and better interpretation (more convenient explanation) of governing 
equations, the following dimensionless parameters are defined.  

)5( 

ߚ ൌ ݇௕ ݇௔⁄ 				, ߤ ൌ ݇௦ ݇௕⁄
߱௡ଶ ൌ ݇௦ ݉ௗ⁄ 		, ߱௔ଶ ൌ ݇௔ ݉௔⁄
௔ߗ ൌ ߱ ߱௔⁄ 			, ߗ ൌ ߱ ߱௡⁄

ܿ௖௔ ൌ 2ඥ݇௔݉௔ , ߞ ൌ ܿ௔ ܿ௖௔⁄ , ௦ߞ ൌ ܿ௔ ܿ௖௔⁄
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Figure 1 Schematic Diagram of Jeffcott Rotor on Damped Flexible Supports.  
 
Where  ߱ is the rotating speed. Equations (4) can be written in terms of non-dimensional 
quantities as follow 

)6( 

ሺെߗ௔ଶ ൅ ௔ߗ	ߞ	2	݅ ൅ 1 ൅ ௔ܣሻߚ െ ߚ ௝ܣ ൌ 0

ሺെߗଶ ൅ ߗ	௦ߞ	2	݅ ൅ 1ሻܣௗ െ ௝ܣ ൌ ݁ ଶߗ

െ ௔ܣ െ ௗܣ	ߤ ൅ ሺ1 ൅ ௝ܣሻߤ ൌ 0

 

Solving algebraic Equation (6) for the rotor amplitude yields 

)7( 
ௗܣ
݁	
ൌ ൤

ଵܦ ൅ ݅ ଶܦ
ሾܪଵሺ1 െ ௔ଶሻߗ െ ଶߗߚߤ െ 2 ௦ߞ ߗ ଶሿܦ ൅ 2 ݅ሾߞ ଵܪ௔ߗ ൅ ௦ߞ ߗ ଵሿܦ

൨  ଶߗ

Since the support amplitude in the frequency domain is given by 

)8( 
௔ܣ
݁	
ൌ

ଶߗߚߤ

ሾܪଵሺ1 െ ௔ଶሻߗ െ ଶߗߚߤ െ 2 ௦ߞ ߗ ଶሿܦ ൅ 2 ݅ሾߞ ଵܪ௔ߗ ൅ ௦ߞ ߗ ଵሿܦ
 

Where  ܪଵ ൌ ሾ1 െ ଶሺ1ߗ ൅ ଵܦ ,ሻሿߤ ൌ ሺ1 െ ௔ଶሻሺ1ߗ ൅ ሻߤ ൅ ଶܦ and ߚߤ ൌ ሺ2	ߞ	ߗ௔ሻሺ1 ൅   . ሻߤ
By using the support amplitude, the magnitude of the force transmitted through the supporting 
structure and foundation are derived, in order to determine support parameters.  
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The force transmitted through the support system can be represented by 

௔ܨ )9( ൌ ௔ඥ݇௔ଶܣ ൅ ሺ߱ܿ௔ሻଶ 

An indication of the effectiveness of the support system in attenuating the forces transmitted 
to the foundation is the support dynamic transmissibility factor TRD which will be defined as 
the ratio of the magnitude of the transmitted support force ܨ௔to the rotating unbalance load 
݉ௗ݁߱ଶ.  
The dynamic transmissibility for the support is defined as 

ܦܴܶ )10( ൌ
௔ܨ

݉ௗ݁߱ଶ ൌ
௔ඥ݇௔ଶܣ ൅ ሺ߱ܿ௔ሻଶ

݉ௗ݁߱ଶ  

By substituting Eq. (8) into Eq. (10) and Simplifying, the transmissibility factor becomes 

ܦܴܶ )11( ൌ ቊ
1 ൅ ሾ2 ߞ ௔ሿଶߗ

ሾܪଵሺ1 െ ௔ଶሻߗ െ ଶߗߚߤ െ 2 ௦ߞ ߗ ଶሿଶܦ ൅ ሾ2 ߞ ଵܪ௔ߗ ൅ 2 ௦ߞ ߗ ଵሿଶܦ
ቋ
ଵ/ଶ

 

The above expression leads to the well-known conclusion that to minimize the forces 
transmitted through the support for supercritical speed operation in the Jeffcott model, the 
support damping should be zero and the support stiffness should be as light as possible. This 
is a highly undesirable design practice for several reasons since large rotor amplitudes and 
forces transmitted may be encountered when passing through the rotor critical speeds, and 
also the rotor system would be extremely shock sensitive and particularly susceptible to self-
excited whirl instability under such conditions. A compromise support damping coefficient 
should be selected to minimize the rotor amplitudes and the forces transmitted over the 
operating speed range and also be sufficient to insure adequate rotor stability.  
 
3 Optimal Design Procedure 
 
Modern high speed rotor bearing systems are complex. With increasing performance criteria, 
the design process of these systems usually requires the integration of the design and analysis. 
Typically, design objectives for rotor systems include placement of critical speeds, 
minimization of response amplitudes and bearing loads, optimal choice of balance planes, and 
maximization of the onset of instability speed. In this work, synchronous response, stability, 
and transmitted load to the supporting structure in the operational speed range is the objective 
function. Many numerical optimization methods have been developed and used for design 
optimization of rotor-bearing systems. Most of these optimization methods are cumbersome. 
Therefore, the approach method is highly desirable and easily applied method to obtain an 
estimate of the optimum bearing stiffness and damping for amplitude rotor and forces 
transmitted.  
 
3.1 Tuned Support Parameters for Synchronous Response 
 
To determine how effective the flexible support is in attenuating the rotor amplitude, a new 

ratio ߙ ൌ ఠೌ

ఠ೙
ൌ ఆ

ఆೌ
 is defined. Also, the effect of internal damping is not relevant to the theory 

of optimization of support parameters using the Gunter method. It is assumed that the 
damping ratio ߞ௦ is equal to zero. Then Eq. (7) become 
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)13( 
ௗܣ
݁	
ൌ ቊ

ሾሺߙଶ െ ଶሻሺ1ߗ ൅ ሻߤ ൅ ሿଶߚଶߙߤ ൅ ሾ2 ζ ߙ ሺ1ߗ ൅ ሻሿଶߤ

ሾܪଵሺߙଶ െ ଶሻߗ െ ଶሿଶߗଶߙߚߤ ൅ ሾ2 ߙߞ ߗ ଵሿଶܪ
ቋ
ଵ/ଶ

 ߗ	

This equation is plotted in Figure (2). Note that all curves pass through two points A, B on the 
graph, independent of the damping parameter ζ. These points are known as fixed points. Their 
locations are independent of the value of ζ if the ratio of the coefficient of ζ2 to the term 
independent of ζ is the same in both numerator and denominator of Eq. (13).  

)14( 

ሾ2	ߙ ሺ1ߗ ൅ ሻሿଶߤ

ሾሺߙଶ െ ଶሻሺ1ߗ ൅ ሻߤ ൅ ሿଶߚଶߙߤ
ൌ

ሾ2 ߙ ߗ ଵሿଶܪ

ሾܪଵሺߙଶ െ ଶሻߗ െ ଶሿଶߗଶߙߚߤ
 

 
 
The equation (14) is satisfied if 

)15( 

ሺ2 ߙ ሻଶߗ ൌ 0 , 
ሺ1 ൅ ሻߤ

ሺߙଶ െ ଶሻሺ1ߗ ൅ ሻߤ ൅ ߚଶߙߤ
൅

ଵܪ
ଶߙଵሺܪ െ ଶሻߗ െ ଶߗଶߙߚߤ

ൌ 0 , 

ሺ1 ൅ ሻߤ
ሺߙଶ െ ଶሻሺ1ߗ ൅ ሻߤ ൅ ߚଶߙߤ

െ
ଵܪ

ଶߙଵሺܪ െ ଶሻߗ െ ଶߗଶߙߚߤ
ൌ 0  

 
The first two solutions are trivial. The third yields the equation 

)16( 
ሺ1 ൅ Ωସ	ሻଶߤ െ ܾΩଶ ൅ ሺ1 ൅ ߤ ൅ ߤ ߚ 2⁄ ሻߙଶ ൌ 0 , 

ܾ ൌ 	 ሺ1 ൅ ଶሺ1ߙሻሾߤ ൅ ߤ ൅ ߤ ሻߚ ൅ 1ሿ 

The solution of this equation gives two values of Ω, designated Ωୡ, one corresponding to each 
fixed point. The amplitude of motion at each fixed point may be found by substituting each 
value of Ωୡ given by Eq. (16) into Eq. (13). Since the amplitude is independent of ζ, the value 
that gives the simplest calculation (namely, ζ = ∞) can be used for the calculation as bellow.  

)17( 
ௗܣ
݁	
ൌ ቊ

ሺ1 ൅ ሻଶߤ

ሾ1 െ ௖ଶሺ1ߗ ൅ ሻሿଶߤ
ቋ
ଵ/ଶ

 ௖ߗ

In order to determine the optimal support parameters in limiting the value of ܣௗ/݁ over a full 
range of excitation frequencies, it is necessary to select the spring and damping constants of 
the support system as given by the parameters α and ζ, respectively; hence the amplitude ܣௗ 
of the rotor is a minimum.  
First consider the influence of the ratio α. As α is varied, the values of Ωୡ computed from Eq. 
(16) are substituted in Eq. (17) to obtain values of ܣௗ/݁ for the fixed points A and B. The 
optimum value of α is that for which the amplitude ܣௗ at A is equal to that at B. Assuming 
that the two roots of Eq. (16) be ߗ௖ଵ

ଶ  and ߗ௖ଶ
ଶ , where ߗ௖ଵ

ଶ  is less than 1 and ߗ௖ଶ
ଶ  isgreater than 

1. When ܣௗ/݁ has the same value for both Ωୡଵ and Ωୡଶ in Eq. (17), whereupon 

௖ଵߗ )18(
ଶ ൅ ௖ଶߗ

ଶ ൌ
2

1 ൅ ߤ
 

In an equation having unity for the coefficient of its highest power, the sum of the roots is 
equal to the coefficient of the second term with its sign changed, thereby 

௖ଵߗ )19(
ଶ ൅ ௖ଶߗ

ଶ ൌ ሾߙଶሺ1 ൅ ߤ ൅ ߤ ሻߚ ൅ 1ሿ/ሺ1 ൅  ሻߤ

From the two preceding equations, the optimum tuning α that required giving the same 
amplitude of motion at both fixed points, is obtained as follow 

௢௣௧ߙ )20( ൌ ඨ
1

1 ൅ ߤ ሺ1 ൅ ሻߚ
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Figure 2 Absolute rotor motions with ૄ ൌ ૙. ૟ૠ and ઺ ൌ ૝ for various values of support damping 

 
If the effect of the damping is considered, it is possible to choose a value of the damping 
parameter ζ that will make the fixed points nearly the points of greatest amplitude of the 
motion. The condition of points A and B being the maximum means that the rotor amplitude 
curve should pass through the two fixed points with a horizontal tangent, that is 

)21( 
߲
ଶߗ߲

൤
ௗܣ
݁
൨
ଶ

ൌ 0 

Solving this equation for ζ2 one obtains 

ଶߞ )22( ൌ
ଵܪ
ଶܪଶ െ ሺ1 ൅ ଶߙଵሺܪሻሾߤ െ ଶሻߗ െ ଵܪଶሿሾߗଶߙߚߤ ൅ ଶሿܪ

ଵሺ1ܪ ൅ ሻଶሾ2ߤ ߙ ߗ ሿଶ
 

That is 

ଶܪ )23( ൌ ሺ1 ൅ ଶߙሻሺߤ െ ଶሻߗ ൅  ଶߙߚߤ

A proper value for the maximum damping is obtained by solving for the value of ζ in Eq. (22) 
when ߗ஺,஻

ଶ  is given by Eq. (18) and α has the optimum value given by Eq. (20). This gives the 
following approximate value for the optimum damping parameter 

஺,஻ߞ )24(
ଶ ൌ

3
4

ߤ ሺ1ߚ ൅ ߤ ൅ ߤ ሻߚ

ሺ1 ൅ ሻൣ2ሺ1ߤ ൅ ߤ ൅ ߤ ሻߚ േ ඥ2 ߤ ሺ1ߚ ൅ ߤ ൅ ߤ ሻ൧ߚ
 

Taking an average of ߞ஺
ଶ and ߞ஻

ଶ produces 

௢௣௧ଶߞ )25( ൌ
஺ߞ
ଶ ൅ ஻ߞ

ଶ

2
ൌ
3
4

ߤ ሺ1ߚ ൅ ߤ ൅ ߤ ሻߚ
ሺ1 ൅ ሻሾ2ሺ1ߤ ൅ ߤ ൅ ߤ ሻߚ െ ߤ ሿߚ

 

In the more general, the single mass rotor theory can be applied to investigate optimum 
support flexibility ߙ௢௣௧ and damping ߞ௢௣௧ for multi-mass rotors operating below their second 
bending critical speed.  
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3.2 Design Optimization for Forces Transmitted 
 
The properly designed support system cannot only greatly improve the rotor amplitude, but it 
can result in a substantial attenuation of the forces transmitted through the support structure 

due to imbalance. Substituting the ratio ߙ ൌ ఠೌ

ఠ೙
ൌ ఆ

ఆೌ
 in Eq. (11) leads to 

ܦܴܶ )26( ൌ ቊ
ሾߙଶሿଶ ൅ ሾ2 ߞ ߙ ሿଶߗ

ሾܪଵሺߙଶ െ ଶሻߗ െ ଶሿଶߗଶߙߚߤ ൅ ሾ2 ߙߞ ߗ ଵሿଶܪ
ቋ
ଵ/ଶ

 

This equation passes through two points P, Q, independent of the damping parameter ζ. Like 
the amplitude vibration, the characteristic equation (26) gives two values of Ω, designated Ωୡ, 
one corresponding to each fixed point.  

)27( 
ሺ1 ൅ ସߗሻߤ െ ܾ ଶߗ ൅ 2 ଶߙ ൌ 0 , 
ܾ ൌ 	1 ൅ 2 ଶሺ1ߙ ൅ ሻߤ ൅ ߤଶߙ  ߚ

In order to determine the optimal support parameters, it is necessary to select the stiffness and 
damping constants of the support system as given by the parameters α and ζ, respectively; 
hence the force transmissibilityܴܶܦ of the rotor is a minimum.  
First consider the influence of the ratio α. The optimum value of α is that for which the forces 
transmitted ܴܶܦ at P is equal to that at Q. The optimum tuning α that required giving the 
same magnitude at both fixed points, is obtained as follow 

௢௣௧ߙ )28( ൌ ඨ
1

1 ൅ ߤ ሺ1 ൅ ሻߚ
 

The parameter of stiffness is equal to attenuate the amplitude of vibration and to decrease the 
dynamic forces transmitted, makes it an attractive occurrence to the design of supporting 
turbomachinery.  
If the effect of the damping is taken into account, it is possible to select a value of the 
damping parameter ζ that will make points P and Q the maximum points on the ܴܶܦ. The 
condition of points P and Q being the maximum means that the force transmitted curve 
should pass through the two fixed points with a horizontal tangent, that is 

)29( 
߲
ଶߗ߲

ሾܴܶܦሺߗሻሿଶ ൌ 0 

Solving this equation for ζ2 one obtains 

ଶߞ )30( ൌ
െሾܪଵሺߙଶ െ ଶሻߗ െ ଶሿሾሺ1ߗଶߙߚߤ ൅ ଶߙሻሺߤ െ ଶሻߗ ൅ ଵܪ ൅ ଶሿߙߚߤ

ଵሺ1ܪ ൅ ሻሾ2ߤ ߙ ߗ ሿଶ
 

A proper value for the optimum damping is achieved by solving for the value of ζ in Eq. (30) 
when ߗ௉,ொ

ଶ  is given by Eq. (18) and α has the optimum value given by Eq. (28). It can be 
shown that there are two separate damping values that causes zero slopes at fixed-points P 
and Q separately, it can be written as 

௉ߞ )31(
ଶ ൌ

ߤ ߚ
2ሺ1 ൅ ߤ ൅ 2 ߤ ሻߚ

, ொߞ
ଶ ൌ

ߤ ߚ
2ሺ1 ൅ ሻߤ

 

Taking an average of ߞ௉
ଶ and ߞொ

ଶ produces 

௢௣௧ଶߞ )32( ൌ
௉ߞ
ଶ ൅ ொߞ

ଶ

2
ൌ

ߤ ߚ ሺ1 ൅ ߤ ൅ ߤ ሻߚ

2ሺ1 ൅ ሻሺ1ߤ ൅ ߤ ൅ 2 ߤ ሻߚ
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The multi-mass flexible rotor is represented as an equivalent single mass rotor for analysis in 
the vicinity of the first flexible rotor critical speed. The optimum support flexibility ߙ௢௣௧ and 
damping ߞ௢௣௧can be applied as an explicit expression for the optimum bearing damping of 
multi-mass rotors.  
The approach technique needs to be developed mathematically for each particular rotor, and 
the mathematics can be cumbersome for complicated rotors. Because of the complexity of 
rotor bearing system analysis, an outlined flow chart need to be employed that the design 
would be time-efficient and find the satisfactory design parameters to meet particular 
performance requirements. The flow chart for determination of the optimal support design 
parameters is presented in Figure (3).  
 
3.3 Stability analysis of rotor 
 
Stability is related to the solution of the damped eigen-value problem for the rotor system. 
The real part of eigen-value is called the growth factor, and must be negative for the system to 
be stable. The imaginary part of eigen-value is the damped critical speed. Stability analysis is 
necessary because of the effect of fluid forces in the rotor system. Incorrect bearing selection 
or presence of aerodynamic effects can produce the equivalent of negative damping, and give 
an unstable system. If a rotor is unstable at a given speed, any perturbation will cause the 
vibration amplitude to grow rather than decay.  
A typical stability analysis that includes fluid-film bearings and the destabilizing interaction 
with process fluid-flow forces is customarily summarized graphically by plotting the stability 
parameter (namely the growth factor or logarithmic decrement) versus an increasing value of 
the destabilizing parameter. Logarithmic decrement is defined as the natural logarithm of the 
ratio of any two successive amplitudes as follow 

ݐ݊݁݉݅ݎܿ݁ܦ	݄ܿ݅݉ݐ݅ݎܽ݃݋ܮ )33( ൌ ߜ ൌ ln
ଵܣ
ଶܣ

ൌ
ߞߨ2

ඥ1 െ ଶߞ
 

4 Simulation Studies 
 
As an illustration of the suggested design procedure, consider the problem of providing a 
single Jeffcott model rotor on flexible damped supports, shown in Figure (1). The parameters 
used in simulation are given in Table (1).  
 
 
 
                   Table 1 Parameters used for simulation 

Parameter Rotor 
Roller 

Bearing 
Support 

(Absorber) 
Unit 

Mass 44 - 22 ሺ݇݃ሻ 
Damping 
Coefficient 

0 0 30 ሺܰ. ሻ݉/ݏ ൈ 10ଷ 

Stiffness 
Coefficient 

58 87. 5 22 ሺܰ/݉ሻ ൈ 10଺ 

unbalance load 0. 045 - - ሺܰሻ 
Disk Radius 0. 254 - - ሺ݉ሻ 
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Figure  3   Flow chart for design optimization of rotor-bearing systems 

 
 
Figure (4) represents the rotor amplitude versus the rotor speed for the optimum tuning α in 
which the tuned support will cause the same amplitude of motion at both fixed points A and B 
for several damping ratios. The support stiffness ratio is obtained α୭୮୲ ൌ 0. 4437from 
equation (20). Also, the first loop of proposed algorithm in Figure (3) can be used to repeat 
calculations that the optimum support stiffness ratio will be equal to the value of equation 
(20).  
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Figure 4 The rotor amplitude vs. speed ratio for various values of support damping for a tuned support system 

 

The effect of optimum support damping that required to make the same value of ܣௗ/݁ at a 
convenient point between A and B as at these fixed points, can be illustrated on the rotor 
amplitude in Figure (4). By selecting the optimum support stiffness and using equation (24), 
the magnitude of support damping coefficient will be ζ୭୮୲ ൌ 0. 962 that also can be achieved 
from the second loop of proposed algorithm in Figure (3). The magnitude of damping 
required has been determined, and it is now necessary to design the damper bearing to 
produce this amount of damping. Figure (5) shows the resultant minimum rotor amplitudes 
with an undamped support, infinite damping and optimum damping ratio. It is obvious from 
the comparison that an optimum damping gives the same value of ܣௗ/݁ at a convenient point 
between A and B. From Figures (4) and (5) for optimum support stiffness and damping ratio, 
a reduction in the maximum rotor amplitude to one-half that of a rotor running on rigid 
supports is represented.  
In the proper design of a flexibly mounted rotor with damping, the dynamic transmissibility 
force should be considerably less. The problem to be considered now will be the selection of 
an optimum value of stiffness and damping to use in the support to minimize forces 
transmitted to the foundation. Figure (6) shows that α୭୮୲ ൌ 0. 4437 leads to the same 
magnitude of force at both fixed points Q and P for several damping ratios. The stiffness 
value chosen to minimize transmissibility is equal optimum for minimizing rotor amplitude 
(α୭୮୲ ൌ 0. 4437). The magnitude of support damping coefficient will be ζ୭୮୲ ൌ 0. 866 that 
also can be achieved from the second loop of proposed algorithm in Figure (3). Thereby 
optimum support damping will cause decreased loads to be transmitted to the foundation.  
The proper design of the damper then must take into consideration the forces, amplitudes of 
motion and stability criteria to be permitted throughout the operating speed range. The 
logarithmic decrement stability criterion for numerous values of support damping is shown in 
Table (2) to illustrate the system is stable because all the δ coefficients are greater than zero.  
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              Table 2 Logarithmic decrement stability criterion 

Objective 
Jeffcott Rotor Model 

ߜ ௢௣௧ Stabilityߞ ௢௣௧ߙ ൐ 0 
Amplitudes of Motion 0. 7748 0. 962 ߜ ൌ 22, Stable 

Dynamic Transmissibility 
Force 

ߜ 866 .0 4437 .0 ൌ 11, Stable 

 

 
 

Figure 5 The rotor amplitude vs. speed ratio with optimum tuning 
 

 
Figure 6 Force transmitted to foundation with optimum support stiffness and damping values 
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The effect of these parameters represents a tuned condition in which the designer enables to 
select the support appropriately. In general, theoretical data for a single-mass rotor can be 
used to determine flexible support properties to attenuate rotor amplitudes and dynamic 
transmissibility for a multi-mass rotor operating through the first bending critical speed.  
 
5 Conclusion 
 
The main objective of this investigation was to motivate and give an idea to designers who are 
willing to deal with optimization of rotor-bearing systems. Because of the complexity of 
rotor-bearing system analysis and time consuming nature of process, an optimization 
procedure need to be employed that the design would be time-efficient and find the 
satisfactory design parameters to meet particular performance requirements. The approach 
method was to determine the optimum support flexibility and damping of a flexible rotor to 
minimize vibration amplitude and the force transmissibility. The governing equations for the 
Jeffcott rotor model mounted on flexible supports are derived and the optimal parameters for 
the supports have been analytically achieved. Next with consideration of the complexity and 
tedious of the analytic equations, a numerical algorithm for determination of the optimal 
support design parameters is presented which may be applied to any rotor model regardless of 
the model complexity and number of degrees of freedom. The results obtained and presented 
in this study are to show the effect of optimal parameters on the considerable reduction of the 
maximum amplitude and the force transmitted to the foundation.  
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Nomenclature 

 
		ܺ௔, 	ܻ ௔ Support Coordinates 
		 ௝ܺ , 	ܻ ௝ Bearing Coordinates 
		ܺௗ, 	ܻ ௗ Rotor Disk Coordinates 
Mୢ, Mୟ Disk and Support Masses 
cୱ, kୱ Damping and Stiffness Coefficients for the Rotor Shaft 
cୠ, kୠ Damping and Stiffness Coefficients for Bearings 
cୟ, kୟ Damping and Stiffness coefficients for Supports 
 ௞ Amplitudeܣ
߱ Rotating Speed 
 Damping Ratio ߞ
 Dimensional Frequency ߗ
  

Subscript  
a Supports 
d Disk 
s Rotor Shaft 
b Bearings 

 


