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Crack Analysis of an Orthotropic Circular
Bars Reinforced by a Magnetic Coating under

Saint-Venant Torsion
R. Bagheri” [§ This paper presents an analytical solution for an orthotropic
Assistant Professor [l Circular cross section bar with a magnetic coating weakened
by multiple arbitrary oriented cracks under Saint-Venant
torsion by means of the distributed dislocation technique. At
first, the solution of the orthotropic bar with a magnetic
coating weakened by a Volterra-type screw dislocation is
achieved with the aid of the finite Fourier sine transform.
Next, the problem is then reduced to a set of singular integral
A. R. Hassani' B equations with a Cauchy type singularity. Unknown
ph.D @ dislocation density is achieved by numerical solution of these
integral equations. Finally, several examples are solved and
numerical results are discussed to reveal the effect of the
magnetic layer on the reduction of the mechanical stress

intensity factor in the bar.

Keywords: Saint-Venant torsion, Orthotropic circular bar, Magnetic coating, Stress intensity
factor, Multiple cracks

1 Introduction

Application of smart materials and structures has been grown recently. Sensors and actuators
are examples of active components made of smart materials which were used widely in smart
structures. These components are widely subjected to mechanical loading. Specially, the
torsion analysis of those is of special interest. The torsion problem of intact bars or beams
made of smart materials was treated by a few researchers [1-6]. Whereas the torsion problem
of cracked smart bars or cracked isotropic bars with smart material coating was not
considered by other investigators. Because of the lack of such studies, the review is only
allocated to the articles relating to intact bars or beams under torsion. Ecsedi and Baksa [1, 2]
presented a direct and a variational formulation for the torsional problem of elastoelectric
beams or homogeneous, linear piezoelectric monoclinic beams. It has been done by a
generalization of the Saint-Venant’s torsion theory of elastic beams to piezoelastic beams.
The problem was formulated in terms of Prandtl’s stress function and electric displacement
potential function which construct the coupled Dirichlet problem in the cross-sectional
domain. As the case studies, the torsional problem of thin-walled piezoelastic beams with
closed cross-section such as rectangular box, and the torsion of hollow circular cylinders
made of orthotropic piezoelectric material were investigated [1].
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Also, exact solutions for solid elliptical and hollow circular cross-sections were presented [2].
The analytical formulations were given for torsion problem of monoclinic piezoelectric
hollow bars with uniform thickness by Talebanpour and Hematiyan [3]. The cross-section
was composed of some straight and curved segments. Similar to references [1, 2] the
governing equations were based on Prandtl's stress and electric displacement potential
functions. A variational method was used to analyze the problem. Some examples including
the piezoelectric rounded square, flattened and rounded triangular tubes were studied. Using
the theory of elasticity, exact analytical and numerical solutions for static torsion problem of a
piezoelectric rod were found by Maleki et al. [4]. The range of valid region for assumption of
linear distribution of electric potential through the cross section and shape-effects on induced
piezoelectric deformation were studied. In other study, Maleki et al. [5] presented the exact
solution for torsion of multilayer piezoelectric bars with rectangular cross section. In this new
study, multilayer piezoelectric materials with different properties were considered while the
axis of torsion and the polarization axes of each layer make different orientations with respect
to each other. Zehetner [6] investigated the compensation of the angle of twist caused by
external torsional moments in rods based on the Saint-Venant’s theory of uniform torsion. It
was accomplished by use of the thin integrated piezoelectric actuator layers. To this end, a
laminated orthotropic rod with homogenous layers was considered. This compensation was
done by distributing of the piezoelectric strains or Eigen-strains. An analytic solution for the
actuating moment in an example of a rectangular cross section was given.

In the present work torsion analysis of a cracked isotropic bar subjected to torsion is studied.
An outer magneto-elastic coating layer was employed as an actuator which the bar and its
coating are under both mechanical and magnetic loading. The loadings are including a
torsional torque around the bar axis and a magnetic induction on the outer surface of the
coating layer. The cracks are only in the isotropic bar. The main scope of the present paper is
to find a proper value of a non-dimensional parameter presenting the effect of magnetic
loading and the coating thickness on the stress intensity factor of the crack tip. The magneto-
elastic actuation is used in order to completely compensate the torsion due to external torque
and remove the mechanical stress intensity factor on the crack tips. According to the above
review, the torsion problem of the cracked bars of circular cross-section with a magneto-
elastic coating is an interesting problem. The previous studies were limited only to torsion of
the intact bars. To the authors’ knowledge, no solution has been reported yet on the torsion
compensation analysis of a cracked bar of circular cross-section with the multiple arbitrary
oriented curved cracks. In the sections to follow, the analytical solution to stress field is first
carried out for an isotropic coated bar with a circular cross-section weakened by one screw
dislocation. The bar was under both torsion and the actuation of a magneto-elastic coating
layer (Section 2.1). Formula for evaluation of the torsional rigidity of the cracked circular bars
is presented (Section 2.2). Section 3 presents the distributed dislocation for these solutions to
formulate and solve the Cauchy-type singular integral equations for the domain weakened by
several axisymmetric cracks. The numerical examples will be presented to validate the results
of the paper and to understand the effect of the problem parameters on the ensuing stress
intensity factors at the crack tips (Section 4). Finally, section 5 offers concluding remarks.

2 Problem formulation
2.1 Dislocation solution
Consider an isotropic circular bar with a magnetic coating as shown in Fig. (1). The circular

cylindrical coordinate selected such that the z-axis is along the longitudinal direction and the
origin is located at the center of the cross-section.
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Magnetic Coating

Orthotropic Bar

Figure 1 Circular cross-section of a bar with a magnetic coating containing a screw dislocation

In Fig. (1), R, is the radius of the circular shaft and the thickness of the coating is assumed to
be R, — R;. A screw dislocation, which has a Burgers vector whose magnitude is b,, is
situated at r = a which the dislocation cut is a radial outward cut on the line of 6 = 0,a <
r < R;. As such, the cross-section consists of three regions, r < a, a <r < R; and R; <
r < R,, which are attached together along the circles r = a and r = R;, respectively.

With the aid of the analytical solution of the generalized Saint—Venant’s torsion theorem, [2]
we have

u=-—-ayz
v = axz

w = aw(x,y)
¢ = ap(x,y) (1)

In which, u, v and w are the displacement components in x, y and z directions, respectively,
a is the angle of twist per unit length of the bar, w(x, y) is the torsional warping function and
@ (x,y) is the magnetic potential function. Egs. (1) are valid in the whole domain (both of bar
and its coating) with same value of a, but the magnetic potential function is the zero in the
bar. By transformation of the cylindrical coordinates to the Cartesian coordinates, Egs (1) can
be rewritten as

U, =0,ug = arz,w = aw(r,0),¢ = ap(r,0) (2)
First, we analyze the domain, specifying the bar cross section, i.e. the regions 1 and 2.
The nonzero strains are only two shear strains, that is, €,, and &g,, which those strains are
related to the warping function as

1 dw(r,8)
Erg =Ty = A——F——
rZ G,, rzZ or
_ 1 _ law(r,a)
0 = 5—To, = ACSTD + 1) 3)
where G,,, Gg, are the shear modulus of the orthotropic bar. After calculating corresponding
stress field and substituting the result into the equilibrium equationaa—r (rt,,) + a;zz =0, in

the absence of body forces, a governing equation in terms of w(r, 8) is obtained:

2 0%w(r,0) dw(r,0)

02w(r,0)
5,2 +r o + G? S0z = 0 4)
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here G = /Gy, /G, is defined as the orthotropic ratio in the coating.. It is necessary to use the
finite Fourier sine transform with respect to the variable 8, that is

F,(n) = [, f(6) sin(n6) do (5)
The inverse of the finite Fourier sine transform is expressed by

f©) = -5 F(n) sin(ne) (6)

It is also important to mention that the torque M is first applied on the bar with its coating and
then the dislocation cut is made. Therefore, the generalized Saint—Venant’s torsion theorem,
1.e., Egs. (1) is valid to solve the dislocation problem.

Boundary and continuity conditions of dislocation cut in the bar may be stated as follows

w(r,0t) —w(r,07) = %[H(r —a)— H(r —Ry)]
dw(r,0t) _ dw(r,07)

20 06 ()
where H(.) is the Heaviside step function. It is worth mentioning that the first condition of (7)
is a jump condition in displacement and the second one is the condition for continuity of the
stress component Ty, on the dislocation cut. Because the problem is anti-symmetric with
respect to the diameter of domain, 8 = 0, we can consider the dislocation solution for the
region 0 < 6 < mas

w(r,0t) = b, [H(r—a) H(r — Ry)]

w(r, ) =0 (8)
Applying the integral transform (5) to Eq. (4) yields
o
rng(; riw—Ganw(r n) = —n:—Z[H(r—a)—H(r—Rl)] 9)

Solution of the last differential equation (9), in the regions 1 and 2, can be put in the form

2
w(r,8) = ;Z A, sin(nd), 0<r<a

2 v -
w = ;Zn:l(AZnTGn + Bypr

(10)

The solution of the problem can also be represented in the form of exponential functions but
in order to easy compare the resulting stress field in the special case i.e. G = 1 with those in
the literature we state the solution in the presented form. Now, we try to find stress field in the
magnetic layer. In the region 3, The constitutive equation in the polar coordinates is given as

[11]
Toz C4-4 _h15 0 €gz
Trz C44 —his| | &rz
B h15 )’11 0 Hg (b

B, Y11 H,

where t4,, T,, and &y,, &, are the mechanical shear stresses and strains, respectively. B, Bg
are the magnetic inductions and H,, Hy are the magnetic fields. Also C,, is the elastic shear
stiffness constant of the magnetic coating, h;s and y;4 are the piezomagnetic coefficient and
magnetic permeability, respectively. The magnetic field components can be expressed in
terms of an magnetic potential ¢ (r, 8), as

)

dp 5¢>
=" %or
Hy - _l0p _ 209 (12)

r a0 r 060
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The nonzero mechanical strain can be calculated with help of Eq. (3) equilibrium equations
for the stresses and the magnetic inductions are

d
E(r';rz) + EY: aB— 0
6 —
E(TB,-) + % =0 (13)

Upon substituting Eqgs. (3) and (12) into above equations and substituting the ensuing
equations into Egs. (13), we arrive at
CaaV?w + hysV2p =0
hisV2w = y11V?¢ = 0 (14)

Cas  hys
his  —Y11
existence of nontrivial solutions for the above equations in terms of variables V2w and V¢
implies that

Since the determinant of the matrix ( ) is the nonzero number, the condition for the

V2w =0
Vip =0 (15)
The solution to the equations V2w = 0, is similar to that of given in the second equation of
(10) but with different coefficients, that is

W(r,0) = 2551 (Agn™ + Bayr™)sin(nd) Ry <7 < R, (16)
We also propose the similar solution form to equation V2¢ = 0 as follows
¢(r,0) = 2 %51 (Car™ + Dyr™)sin(nd) Ry <7 < Ry (17)

The unknown coefficient of Egs. (10), (16) and (17) must be determined by following
boundary and continuity conditions
w(a=,0) =w(a",0)
1,,(a”,0) = 1,, (a*,0)
TrZ(RZi 9) =0
BT (RZ’Z) = BO
B, (Ry,z) =0
Trz(Rl_' 0) = Trz(Rfr 6)
w(Ry,0) = w(R{,6) (18)

where B, is magnetic induction in the outer radii of the magnetic layer. As we will explain in
the following, the magnetic layer will play role of an actuator and thus its outer radii can be
imposed to the magnetic induction. Required coefficients are solved to yield

b
Ay = a_nrn{ﬁ [2(an121 —pPn) + (Ceq - 1)(K721 - przl) +(1+ Ceq)(l — phKh ]
hlSCeq 1- (_1)71}

Gy, 't nla
[2 + (Ceq - 1)pn - ZKrzl + (Ceq + 1)an721]

+2ByR, K,

Z

Ayp = Rl_n['n{_

j_nzaB R hlSCeq 1- (_1)71
oft2Ky G}’ll} 2o }
Byn = —-a" (19)
in which
_ Ry n
Ky = (R_z)
a
Pn = (_)n
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GYllGrz
h15 + V11C4ai
= ()

Ceqtl” 1- K2

Ceqg =

(20)

. 1-C . . ) o
whereinn = rceq. We did not bring the coefficients Az, B3,, C,, and D,, here because in this
eq

article we assume that the cracks to be only in the isotropic bar not in the coting. Therefore,
the stress field inside the coating will not use directly and the related coefficients are given in
appendix A. Substituting the coefficients (19) into Egs. (10) and inserting the ensuing
equations into Egs. (3) the shear stress components for the bar are given by

2Ga ) ) 5
Tyz = — [2(ann —pn) + (Ceq - 1)(Kn -pn)+(1+ Ceq)
r
n=1
— (=1)" hy5Ceq, .
(1 - pn n ] + 2BORZKnpn n2a Gyliq}Sln(ng)
,0<r<a
ZGa ) )
Trz = ? n{r [2 + (Ceq 1)pn - 2Kn + (Ceq + 1)ann]
n=1
- (_1) hlSCeq
2ByR n
+25, 2Kn g s }( )
a .
4nZ Ysin(nf),a <r <R,
ZG“ nr 2 2
Toz = — - (_) n{_ [Z(ann pn) + (Ceq - 1)(Kn - pn) + (1 + Ceq)
r
n=1
1—(=1)"hysC
(1 - p‘I’ZlKTZl ] + 2BORZKnpn n2a Gyliq}cos(ne)
+rGa, 0<r<a
b,G ZGa
Toz = — 2:_”, ? eq 1)pn - ZKrzl + (Ceq + 1)pnkrzl]
n=1
- (_1) hlSCeq
2ByR n
+25, 2Kn g Crs }( )
—L—Za(g)n}cos(nH) +rGa, a<r<R Q1)
Knowing nk2 < 1, we write a MacLaurin expansion for I;,, in the following form
L= oy Seo ™™™ (22)

Using Eq. (22) and doing some manipulatlons Egs. (21) are rewritten in the term of four new
functions E,,, ,,, G,, and H,, as follows

r, = —sbea gy 4 m2(En (L, 6)
"y (Cog + 1) ¢ 2 mn R2 ’
2
r
—Em (5, 0)) + (Coq — 1)<Em< 12 0) — Ep(=,6))
Rl 2 R
+(1 + Ceq)(Em(E: 9) m(Rz,g))],O <r<a
2h15Ceq a <
= ) C 1 E _,0 —z m
Trz 7T7'V11(Ceq +1) Anr Ceq n 1{( eq +1) O(r ) mzon
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r ar Rir ar
(2B (5 6) + (Ceq = DEm(Gez 0) = 2B 0) + (Ceq + DEm(z, O]}
,AST <SRy

2hy5Ceq
7T7”V11 (Ceq +1)

Tgy = @(r,0)

Gg,b,
T +1{Zn (2P 0) = F ()
+(Cog = 1) (5,6 - Fm(m. 6)) + (1 + Ceq)(Fm(F, 0) = Fu (-, )]

+rGa,0<r<a

2hy5Ceq Gogb, 1 a =
- o(r,0 Coo +1)Fy (2,0 —Z m
toz m‘yll(Ceq+1) o)+ Coq +1{( et DFo(,6) 0'7

m=

T ar
[ZF ( 2 ’ ) 2Fm(_: 9) - ( 1)F ( 2 ) (Ceq + 1)Fm(_2’ 9)]} +rGa
R? R, R?2 RZ
,aSrSRl (23)
where

r
(r,0) = 2BoR, ) 1™ G-, 0)
— 2

®(r,0) = 2BoR; X0 1™ Hin (5, 6) (24)

and the above-mentioned new functions are introduced as
(o]

E,(x,0) =2 Z(Kfnx)"sin(ne)
E,(x,0)=—-1-2 Z(K,an)”cos(ne)

o 1— (—D)"
G (x,0) = Z (—) (k2,x)"sin(no)
n=1 n
_yo 1=CD" 5 n
Hyn(x,0) = T2, =5 (2 x)mcos (n6) (25)
With the help of the summation formula given in the appendix of the reference [12] for the
series Y1 k™sin(n@) and Y,—;k™cos(nB),|k| <1, and also the summation formula

2n-1
extracted  from  the reference [12] for Yo, I;N—l sin((2n—1)0)  and

2n-1
Yoy I;N——l cos((2n — 1)6) we arrive at

E (x6) = sin@
miX, 6 = cosh(In(xk2)) — cos 8
F(6,0) = sinh(In(xk2))

cosh(In(xxk2,)) — cos 6
2

1 _1, 2KmX
Gn(x,0) = Ztan (Tsme)

m

H,(x,0) = coth 1( ZKmx — sinf) (26)

If the coating thickness to be vanished (B, = 0,R; = RZ), the stress fields (23) are simplified
as
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s = o [Eo(,0) - E0<R2,e>].o <r<a
= T [Eo(2,0) Eo(Rz,e)].aSrSR
Toy = Z [F (RZ,Q) Fo(— )] +rGa,0<r<a
To, = sz [FO(RZ,H) + FO(— 0)] +Gra,a<r <R (27)

The above stress field can be Vahdated by reference [8]. There may be two reasons to rewrite
stress component (21) in the form of Egs. (23). First, since the series including pre-defined
functions E,,and E,, rapidly converge with increasing index m. Also for special case, By =
0, R; = R, (the bar without the coating), the stress components are simplified as the closed
form relations.

Also type of the singularity of the stress fields near the dislocation location i.e. r = a is the
Cauchy type, namely 1/r" where ' is the distance from the dislocation position, Fig. (1). The
existence of this kind of singularity has been proved in the reference [8].

For minimization of the mechanical stress intensity factors, we must decrease the resultant
external loading on the surfaces of the crack. Therefore, magnetic induction is considered on
the outer radius of the coating.

2.2 Torsional rigidity

Considering a torque M applying to the bar, relation between the torsional rigidity J and the
shear stress component 7, takes the following form [13]

M=Ja=["["?r’t,drde (28)
By substituting the Eq. (3) and (11) in the above equation, we get
J=Jo—3G(RE —a?) = (29)
where
Jo =5m(GRY + C4a(RE — RD) (30)

It is noteworthy that, the torsional rigidity in Eq. (29) has depending on the dislocation
density b, and the torsional rigidity takes the form of Eq. (30) in the intact bar.

3 Analysis with multiple cracks

Now, the dislocation distributed method is employed to analyze the defined problem which is
a coated bar weakened by the multiple cracks.
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Figure 2 Circular cross-section of the bar with a magnetic coating containing a smooth
embedded crack

Herein, we define a local coordinate system (n —t) on each crack to give normal and
tangential stress on the crack surfaces.

Tz (1, 60) = To,(1, 0)sing; + 7., (1, 6)cosg;
Tnz (1, 0) = T9,(r, 0)cos@; — T, (1, B)sing; GB1)

where ¢; is the angle between the tangent to each point of the i-th crack and the radial
position vector of that point. We drive the stress field of the bar by use of the distributed
dislocation technique. The stress fields also satisfy equilibrium requirements and boundary
conditions. For a circular cross-section bar weakened by multiple cracks, governing equation
and outer boundary conditions remain unchanged. Only, the surfaces of the cracks should be
traction-free. The parameter b, is a controlling that is set such that the traction-free condition
on the surfaces of the cracks to be satisfied.

Now, we distribute the dislocations with unknown density b, on the infinitesimal segment d4;
situated at the point (r;, 8;) of the surface of the j-th crack. The tractions on the surfaces of the
cracks are achieved by substituting from Eq. (23) into Eq. (31) .Since the dislocation cut has
located at 6 = 0, we must replace 6 by 6; — 6; to derive the traction on the surface of the i-th
crack. Therefore we arrive at

1SCeq .
Tn,(17,0;) = @(r;,0; — 0;)cosp; — ¥ (r;,0; — 0;)sing;
nz(l 1) 7TV11(Ceq+1)ri[ (l i ]) ] (l i ]) Qi

1
+G2b,;dA; 7 (RZ — r)ri coso;
L s i 2R (Ti 6i — 6) — FaCll 9, 8))
amr, Ceq+1{ " 2(En(=,0; — 6; m( g0 1))
+(Ceq 1)(F(”9 0,) — F(zr 9))+(1+Ceq)(F(”9 - 6)

27

Ti Ti
(.0, = 6)]cose; - Z M2 0~ 6)
J m=0 2
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T Rir; TiT;
B 0= ) + (Ceq = ) Bz, 00 = 0) = En(, 00— 6,)

T GM
+(1+ Ceq)(Em(;l, 0, —6,) — m(;ezf ,0; — 0))]sing;} + ST Cosg, 0<nr <7
j 0

C
15%~eq .
T, (1;,0;) = d(r;,0; — 0;)cosp; —¥(r;,0; — 0;)sing;
nz(l 1) 7T)/11(Ceq + 1)Ti[ (l i ]) Qi (l i j) §01]
1
+G?b,jdA; T (RZ — 7)1, coso;
0
Gbydd; 1

Ti T;
1)[F,(Z,6; — 6 e 0~ 0)sine.
amr, Coq +1{(Ceq+ )i o(ri,Hl 6,)cos; O(ri’el 0,)sing;]

Ry Ti
= ) A 2EL S 00— 6) — 2F o, 0, — 6))

= R; Ry

.yl hiti
—(Ceq — DE, R? ,0; = 0;) = (Coq + DE, RZ’ 6; — 0;)]cosy;

T
+Z [2E ( —0)) + (Cog — DEp, Rz,e-—ej)
Ryr; T .
—2Ep(—5,0; = 0)) + (Ceq + DER (=5, 0; — 0))]sing,} + ——T;CosQ, 1T <1 < Ry
R R; Jo
(32)
With regard to @ = M /D, the above relations are integrated on non-dimensional crack length
to find traction on the surface of the crack. Since the crack surface is traction-free, the
established integral is zero. If the terms without b, to be budged to the other side of the
equality, an integral equation is established as following form

1
0:(ri(s),6:(s)) = ZJ k(s Dby, (Odt, -1<s<1, i=12..,N
j=17 7t

(33)
In which kernels k;;(s, t) and Qi(1;(s), 8;(s)) are given in the Appendix B.
The considerations of single-valuedness displacement require that [8]
1
| Jiror + mogors,©d=o
-1
(34)

where dA; = \/ [/ ()] + [r;(£)6; (£)]?dt is the infinitesimal segment on the jth crack. The

Egs. (33) and (34) are in terms of dislocations density and must be solved simultaneously. If
the crack is an embedded crack, the solution for b,; (t) is of the following form

9z (t)
b=
69)

By distributing a set of dislocation densities along the borders of the cracks and substituting
a = M/] as well as viewing the Eq. (30), the torsional rigidity in the cracked bar is achieved
as follows

] =Jo/l1 +—Z [ (& =52 iy @ + e @b @

-1<t<1

(36)
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In which N is the number of the cracks. The evaluation of the torsional rigidity can be done

by discretizing the integral appeared in Eq. (36) at specific discrete points [8]. The domain of
k-1

the integral is discretized at m collocation points t;, = cos ( ) Therefore, the torsional

rigidity is of the following form

] =Jo/l1 +—Z Z(R1 2 [ OF + [ 08 (019, (t0)]

j=1k=

(37)
After evaluating g,;(t), the mechanical stress intensity factors at the crack tips may be
defined and obtained as below [8]

Ky = ﬁG[[l"'(—l)]z + [1']‘(—1)9]{(—1)]2]Z g,(—1)

Kur = G [) (D12 + [1;(1)8] (D]?] g5(1) (38)
4 Numerical Examples

. _10 M1sBo - . . .
For numerical results, A = 10710 )% is the non-dimensional parameter presenting the effect
11%44

of the magnetic induction loading on the stress intensity factor. Assume that the magnetic
layer has the properties as: Cyq = 4.5 X 101°[N/m?], h;s = 550[N/Am],y;; = 157 X
107°[N S2/C?]. Also, we have G,, = 80 X 10°[N/m?]. In the all example orthotropic ration
is considered to be 0.8.

Example 1

For the first example, we consider an isotropic bar weakened by a straight radial crack. So we
set G = 1. Firstly, by taking this problem as a bar without any magnetic coating, i.e. B, = 0
and R; = R,, the numerical solution will be compared with existing results to illustrate the
efficiency and accuracy of the dislocation method. The center of the radial crack is situated at
1o = 0.3R. The results of dislocation method are compared with the results of the reference

[14] in which k, = GMRVrl /Jo- The results show negligible difference between the results
of the present work and those obtained by [13]. The indexes i and o designate to the inner and
outer tips of the crack. We consider a magnetic layer with R, = 1.1R; which the coating is
acted as an actuator. The isotropic bar has a radial crack with length | = 0.4R; wherein the
center of the crack is located in the radius of r, = 0.5R;. The magnetic induction on the outer
radius of the coating layer is set to be B,. The effect of the magnetic induction (dimensionless
form of B or A4) on the stress intensity factor of the crack is shown in Fig. (3).

Table 1 Comparison of calculated results with the results of reference [14] for a straight embedded crack.

l/R 1/ kiii/k Kio/k
Present study | Reference | Present study | Reference | Present study | Reference
[14] [14] [14]
0.1 0.9982 0.9981 0.2522 0.2518 0.3525 0.3519
0.2 0.9922 0.9922 0.2087 0.2070 0.4113 0.4081
0.3 0.9808 0.9808 0.1695 0.1660 0.4796 0.4703
0.4 0.9612 0.9612 0.1352 0.1295 0.5650 0.5427
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We can find that the stress intensity factors subjected to the magnetic effect can be much
smaller than that of when the elastic bar is only under torsion. The external loading on the
crack surfaces is a function of torsional loading and magnetic induction, therefore by
appropriate selection of the magnetic induction, external loading on the crack surfaces can be
nearly vanished and stress intensity factors of the crack tips can be vanished. As it can be
seen, there is a minimum value for the nondimensional stress intensity factor of each crack
tip. This minimum can be reached at different values of A for each crack tip. Therefore, as a
rule of thumb, by minimizing the value of the average dimensionless stress intensity factors of
both crack tips, we may reach the relatively less value for the stress intensity factor of each

crack tip. We plot the graph of average dimensionless stress intensity factors of both tips

kinitknio 0.16

versus A. By choosing 4 = —0.95 we arrive at which is representative for

0
% ~ 0.16 and % ~ 0.16. Generally speaking, the intersection of the graphs of % and
0 0 0

k . ) . : :
% versus A in which k;;;; = k;;r can specifies a suitable value for A. In this value of 4, the

0
average dimensionless stress intensity factors of both tips are almost minimum.

The stress intensity factors must be decreased by adding the stiffer coating. But for magnetic
coating, the elastic shear stiffness constant (C,,) is less than that of orthotropic bar (G,).
Therefore, in lack of the magnetic field, increasing the weaker magnetic coating thickness
increases the stress intensity factors providing that the outer radius of the coating to be
constant. On the other hand, the stress intensity factors are under the influence of both of the
magnetic fields and the coating thickness. To illustrate this, by setting A = 0.01 or A = 0.03,
the variations of the stress intensity factor as a function of the relative magnetic coating
thickness (R, — Ry)/R, are plotted in Fig. (4). As it can be seen for A = 0.03 increasing of
the stress intensity factor with enlarging the coating thickness t = R, — Ry is more
considerable in comparison with 4 = 0.01.

2.5
kl_/k0
- - — ka/k0
2r (k. +k )/2k
i o 0

Figure 3 Graph of the dimensionless stress intensity factor versus A for a straight crack
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Figure 4 Variation of the normalized stress intensity factor versus the coating thickness for
two different values of the 4

Fig. (5) shows the variations of normalized stress intensity factor versus the normalized crack
length /R, for each the crack tip. The coating thickness is set to be t = 0.1R; and the
dimensionless magnetic induction is chosen as A = 0.01. The stress intensity factor at the outer
crack tip increases with the growth of the crack length. But for the inner crack tip, the stress
intensity factor slightly decreases initially because of approaching it to the center of the bar
wherein the stress components are least. Finally, we absorb that the growth of the crack length
i1s dominant factor in increasing of the stress intensity factor. It is also obvious that torsional
rigidity will decrease with the increase of the crack length. In Fig. (6), we illustrate the
variation of the normalized torsional rigidity J /], versus the crack length.

Example 2

As the second example, consider the torsional problem of an isotropic bar weakened by an
eccentric circular crack with radius a = 0.5R; as shown in Fig. (7). Because of lack of an
example for cracked bar with magnetic coating, we validate the work with a cracked coatless
bar under torsion. In this example, the numerical results was compared with the ref [15] by
setting By = 0 and R; = R, = R. Based on the data shown in Fig. (7) and Fig (8), in which
ko = G,,MR,\6a /Jo, there is a relatively good agreement between the results of the
dislocation method and the results reported by Wang and Lu in the ref [15].
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Figure 5 Variation of the normalized stress intensity factor versus the normalized crack length
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Figure 6 Variation of the normalized torsional rigidity versus the normalized crack length
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Figure 7 Variation of stress intensity factors with 6 for a circular crack
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Figure 8 Variation of normalized torsional rigidity with 8 for a circular crack
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In continuation of this example, we consider an orthotropic bar with the magnetic coating
with thickness 0.1R;. The circular crack in the orthotropic bar is considered as a quarter of an
eccentric circle with radius a = 0.5R;. On Fig. (9) we have represented the dependence of the
magnitude of stress intensity factor on A. In fact, stress intensity factor can be vanished by
considering the effect of coating layer. Again, the intersection of the graphs of the stress
intensity factors of both crack tips versus A can specify a good candidate for A which almost
minimizes both the stress intensity factors of the crack tips.
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Figure 9 Variation of the stress intensity factors with A for an eccentric circular crack
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Figure 10 Comparison of the normalized stress intensity factor versus the relative coating thickness
for two different values of the A
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The variation of non-dimensional stress intensity factor with relative coating thickness is
plotted in Fig. (10). As it can be seen, for different values of A, the graphs of stress intensity
factors versus the relative coating thickness have same trends as the coating thickness is
increased. For 4 = 0.04 increasing of the coating thickness magnifies the stress intensity
factors of the crack tips more than that of A = 0.02. In what follows, the effect of crack length
on the stress intensity factor and torsional rigidity for two different crack eccentricities is
illustrated in Figs. (11) and (12) respectively. For the crack with small eccentricity, 4 = 0.02
provide the smaller stress intensity factor in comparison with A = 0.04. A similar trend as the
crack with big eccentricity can be realized. Viewing the Fig. (11), it is known that for
A = 0.02, the normalized the torsional rigidity will be decreased with growing the crack length.
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Figure 11 Graphs of the normalized stress intensity factor versus the length of the crack for a circular crack
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Figure 12 Graphs of the normalized torsional rigidity versus length of the circular crack
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Example 3

In the following examples, we consider an orthotropic bar with a magnetic coating weakened
by one embedded crack perpendicular to the radial direction as shown in Fig. (13). The crack
radial distance is d = 0.2R; where the crack length 21 = 0.2R; and the layer thickness 0.1R;
are constants. Variations of normalized stress intensity factor at the crack tip, k;;;/k in which

ko = G,,MR,\rl / Jo , as a function of the normalized parameter A are plotted in Fig. (13). It
is obvious that the stress intensity factors can be vanished by setting A to a suitable value. We
recall that the stress intensity factors for both tips are identical because of the symmetry of the
problem. In the next graph of this example, by assuming 2] = 0.2R; and A = 0.4 or A = 0.7,
the effect of the relative coating thickness on the stress intensity factor is studied, as shown in
Fig. (14). As it can be seen decreasing of A from 0.7 to 0.4 attenuates the stress intensity
factors of the crack tip while the stress intensity factors are increased by enlarging the relative
coating thickness.

Figs. (15) and (16) display the variations of the normalized stress intensity factor and
torsional rigidity versus the normalized crack length for A = 0.4 and A = 0.7. The coating
thickness is set to be t = 0.1R;. By increasing the dimensionless crack length [/R;, the crack
tips approach to the outer boundary of the bar which corresponds to portions of the bar cross-
section with higher levels of the stress field. As one expected, the normalized stress intensity
factor of the crack tips should be generally increased by the growth of the crack length.
Although by choosing other values of A, it is possible to decrease the normalized stress
intensity factor with enlargement of the crack length. Also the normalized torsional rigidity
must be decreased by growing the crack length since this makes the cross-section to be
weaker and weaker.
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Figure 13 Normalized stress intensity factor as a function of the non-dimensional parameter A for
an embedded crack
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Figure 14 Variation of the normalized stress intensity factor versus coating thickness for
an embedded crack
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Figure 15 Variation of the normalized stress intensity factor versus length of the crack for
an embedded crack
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Figure 16 Variation of the normalized torsional rigidity versus length of the crack for an embedded crack
Example 4

In the last example, we analyze the orthotropic bar weakened by two embedded straight
cracks with constant length 21 = 0.1R,, as shown in Fig. (17). The lengths of the cracks are
equal and one tip of the each crack is fixed and located on a circle with radius a = 0.75R;. In
other words, each crack is apart the cord with central angle 45 degrees.

The plots of the normalized stress intensity factor as a function of the A for each of the tips
and also the averaged stress intensity factors are illustrated in Fig. (17). For A = 0.75 the
stress intensity factors of the both crack tips are simultancously the smallest.
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Figure 17 Graphs of the normalized stress intensity factors versus A for two symmetric cracks
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Figure 18 Graphs of the normalized stress intensity factors versus the coating thickness for

two symmetric cracks
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In the next graph of this section, we can observe the variation of the normalized stress
intensity factors versus the relative coating thickness by assuming A = 0.02 and 2/ = 0.2R;
in Fig. (18). As it can be seen, the normalized stress intensity factors are increased by the
extension of the coating thickness. In the following, the result of the normalized stress
intensity factors and torsional rigidity are depicted in terms of the dimensionless crack length
in Fig. (19) and Fig. (20) respectively. The results are evaluated for A = 0.02. It can be seen
that for each of the crack tips, when the length of the cracks grow, the value of the normalized
stress intensity factor approaches a maximum value. Reversely as expected, the computed

normalized torsional rigidity is decreased with the crack growth.
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Figure 19 Graphs of the normalized stress intensity factors versus the length of the cracks
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Figure 20 Graphs of the normalized torsional rigidity versus the length of the cracks for two symmetric cracks

5 Conclusion

In the present paper, a torsion problem of an orthotropic bar reinforced by a magnetic layer is
studied using the dislocation distributed technique.

Numerical results are also presented and it can be found that:

1. Stress field around the crack tip depends on the magnetic induction on the outer surface of
the coating and an appropriate value of the magnetic induction should be determined to
minimize the stress intensity factor.

2. Thickness of the coating accompanying with the magnetic induction plays a significant rule
in the reduction or magnification of the stress intensity factors.

3. By increasing of the crack length, the stress intensity factors go up and the torsional rigidity
deceases.
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Nomenclatures

r Radial coordinate
R; Radius of the isotropic bar
R, Outer radius of the isotropic bar
0 Angular coordinate
a Angle of twist per unit length
W Torsional warping function
[0) Magnetic potential function
Trz Toz Stress component in the radial and angular directions
Gyrz Goy Shear modulus in the radial and angular directions of the bar
H(.) Heaviside step function
b, Dislocation density
o(.,.) Finite Fourier sine transform of torsional warping function
Cys Elastic shear stiffness constant of the magnetic coating
h;s Piezomagnetic coefficient
Y11 Magnetic permeability
H,, Hg Magnetic fields in the radial and angular directions
By Magnetic induction
| Torsional rigidity
M Applied torque
k(.,.) Kernel of integral equation
K Stress intensity factor
Appndix A:
. (A1)
Aszp = nrn{_z Ceq(l'pn)Kn
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Co = Ry™{ET, 1+ Ceq)BoR
n 2 {811 n{ 1’120( G €11 [( eq) 2]
b, 11"
Ceq(1- -B —_—
+ na eq( pn)Kn} + ( 0 2) n2 811(1 K—n)}
hys | 1-(-1)"eqsC
Dy = Ry = Tn{ 5o g [(1-Ceq) BoR: 1]

1-(-D"

b,
+—C.,(1- + (-BoR, k) ————————
eq( pn) ( 02 n) n2 811(1 Kn)}

2na



Crack Analysis of an Orthotropic Circular Bars Reinforced ... 111

Appendix B:

Kernels of the integral equations are:

. ~z G (B1)

ki(s,t) = GOZJ(rj )z + (r,.e- ) {ﬁ (R%-r-z)ricoscpi

1

e +1{Zn [2(Fn G 01-8)-Fn (2, 61-0))

+(Ceq-1)(Fm( = o, -0))- Fm( 2 =,0;-0))) + (1 + Cog) (Fru(—=5 ‘2’,9 -0))

r. .
Fn(,6:-0))|cosr Z nm[Z(Em(%, 0,-6)

) m=0 2

r.

'Em(R_llf ei'ej)) + (Ceq'l)(Em( 2 ] 9 e) Em(Rz ,9 -0; ))
r.
L+ Ceq) EmG, ei-e,-)-Em(l;—%’. 6;-6))]sing}},0 <1y <15
N2 N

kij(s,t) = G| (r;)? + (1;6;) {2—]0 (Rl-r]- )ricos;

! (Coq + 1)[Fo (2, 0;-8,) coss-Eg (=, 6;-6))si

4, Ceq+1{ eq [Fo r’ i~9j)COSP;-Lky r’ i~Y; sine;]
= Rir; r;
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m=0 1
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The left side of the integral equation (33) is
2h15ce N 1 (BZ)
Qi(s) = - q Zf [@(r;, 8;-65)cos@;-P (Iy, 6;-6;)sine;] dt
1TriY11(Ceq + 1) =171
Go,M
- I; COS4
Jo

where all the parameters with index i are functions of s and those with index j are functions of
t.



