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Vibration Analysis of a Double Layer

J. Ehyaei* | Microshell Utilizing a Modified Couple Stress
Assistant Professor Theory

In this paper, dynamic modeling of a double layer cylindrical
functionally graded (FG) microshell is considered. Modeling is
based on the first-order shear deformation theory (FSDT), and the
equations of motion are derived using the Hamilton's principle. It
H. Safarpour’ § assumes that functionally graded length scale parameter changes
Master of Science ff along the thickness. Generalized differential quadrature method
(GDQM) is used to discretize the model and solve the problem. In
this research the size effect is investigated using a new modified
couple stress theory (MCST) which has been considered for the
first time in the present study. The accuracy of the presented model
E.Shahabinejad* }J is validated with some cases in the literature. Considering the
Master of Science f microshell as double layer and utilizing the MCST in addition to
considering the various boundary conditions are the novelty of this
study. Furthermore, the effects of length, thickness, FG power
index, Winkler and Pasternak coefficients and shear correction
factor on the natural frequency of double layer cylindrical FG

microshell are studied.

Keywords: Double walled; Functionally graded material; Moderately thick cylindrical
microshell; Modified couple stress theory; Vibration analysis.

1 Introduction

The applications of FG cylindrical shells are very broad. They can be applied to Functionally
graded materials (FGMs) have many advantages and superior properties, including high
temperature fuselage structures of civil airliners, aerospace structures, military aircraft
propulsion system, and other engineering fields. In addition, the investigation of their
vibration characteristics is of great interest for design engineers and manufactures.
Haddadpour et al. [1] and Farid et al. [2] investigated the vibration of cylindrical FG shells
and panels. Moreover, the use of FG materials has received a considerable attention within the
micro/nano structures such as atomic force microscopes, Rahaeifard et a. [3] and micro/nano
electromechanical systems, lee et al. [4], Ghasemabadian et a. [5].
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Here, it should be noted that when the sizes change to the nano /micro scale, new phenomena
are created. In the micro/nano scales, the material properties depend on the micro/nano scale.
Cylindrical shells have been widely used in micro- and nano-scale devices and systems. It
should be noted that the size effect is not important in the classical continuum theories while
it cannot be overlooked for micro and nano scale systems. One of the non-classical theories
that consider the effect of size is couple stress theory. Koiter [6], and Mindlin[7] investigated
the couple stress theory including higher order rotation gradients, which is in fact the
asymmetric part of the deformation gradient. According to this theory, there are four material
constants (two classical and two additional) for isotropic elastic materials. Asghari et al. [8]
presented the size effects in Timoshenko beams on the basis of the couple stress theory. It is
difficult to determine the microstructure related length scale parameters. Therefore, we are
looking for the continuum theory which contains only one additional material parameter of
length scale. Modified couple stress theory is one of the best and most well-known continuum
mechanics theories that include small scale effects with reasonable accuracy in micro scale
devices. Yang et al. [9] presented a modified couple stress theory, in which the couple stress
tensor is symmetric and only one internal material length scale parameter is involved, unlike
the classical couple stress theory mentioned above. Many scholars have used this theory to
examine the dynamic and static behavior of micro-beams and micro-plates, Shaat et a. [10].

It is noted that, nonlocal theory of Eringen is one of the famous continuum mechanics theories
that includes small scale effects with good accuracy in nano/micro scale devices, although the
results show that the modified couple stress theory coincides with experimental results better
than Eringen’s nonlocal elasticity and classical theories[7] Miandoab et a. [11]. Therefore, in
this study, the modified couple stress theory has been used. Unique mechanical properties
and extreme electrical conductivity of double-cylindrical shell structures have caused them to
be of extensive use in various nanodevices. It isworth mentioning that, dynamic behavior of
double walled carbon tubes (DWCNTS) is similar to double cylindrical shell structures.
Considering the use of DWCNTSs in conveying fluids in nanodevices and the importance of
identification of fluid-conveying DWCNTS, many researchers attempt to scrutinize the
dynamic behavior of these nanostructures, Karami € al. [12], Choi et a. [13], Chang [14].
Recently, zhang et al. [15] studied the free and forced vibration analysis of circular cylindrical
double-shell structures under arbitrary boundary conditions. The natural frequencies and
mode shapes of the structures as well as frequency responses under forced vibration obtained
with the Rayleigh—Ritz procedure. The novelty of this work is consideration of the size effect
in the dynamic behavior of double moderately thick cylindrical FG microshell. The main idea
of the present work is to propose a numerical model to study the free linear vibration of
double FG micro shell using a new modified couple stress theory. Furthermore, GDQM is
used to get the numerical results.

In this study the outer and inner cylindrical microshell material is functionally graded
material and according to the power law distribution. It is assumed that the outer surface is
metal and the inner surface is ceramic. The governing equations and boundary conditions
have been developed using Hamilton's principle. The results show that, length, thickness, FG
power index, winkler and pasternak coefficients and shear correction factor play important
roles on the natural frequency of double cylindrical FG microshell.

2 Mathematical formulations

At the outer and the inner surfaces, the functionally graded nanoshell is generally composed
of two different materials. According to the power law distribution, bulk elastic modulus E(2)
and mass density p(z) are assumed to be change along the thickness direction. Volume
fraction index m determines the variation profile of material properties across the thickness of
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the FG nanoshell. Assuming that the inner surface (at z=—h/2) is metal and the outer surface
(at z=h/2) is ceramic, and for different values of m, the mechanical properties can be obtain as
[16]
E(Z) — (Eout _ Ein)(%_'_%)m + Ein
D

out

p(2)=(p —pi”)(§+§)m "

According to the first order shear deformation theory, the displacement field of cylindrical
shell along the three directions of x,0 and z is expressed as[17]:

U(x,0,z,t) =u(x,6,t) + zy, (X, 6,1)
V(X,0,z,t) =V(X,0,t) + 2y, (X, 0,1) 2
W (x,8,z,t) =w(x,6,t)

In Eq. (1), u(x,6,t), v(x,0,t), and w(x,0,t) are considered as neutral axis displacement, and

Ye(x,60,t) and ,.(X,60,t) as rotation of a transverse normal surface about the circumferential
and axial directions. According to this theory, the strain energy is expressed as [16]:
©)

U :%J.\J;J.(Jijgij + mi?li?)dv

In Eq. (2), xij, €, 0;j and m;; are the components of symmetric rotation gradient tensor,
strain tensor, stress tensor, and higher order stress tensor, respectively. Which are expressed
as[16]:

1
&; =§(u’j +U,) (4)

Zi? = %((9,1' + (”,i) (59)

s s 1 5b
m; =2l Z,UZij ' @; :E[Curl(u)]i (50)

It is worth noting that, index i and j in Egs. (3), (4), (5a) and (5b) are x, 6 and z, respectively.
Also, in the above equations u and ¢ represent the components of displacement vector and
infinitesimal rotation vector, respectively. In Eq. (5b), | is a parameter which denotes an
additional independent material length-scale parameter related to the symmetric rotation
gradients. The functionally graded length scale parameter in the cylindrical FG microshells
has been considered for the first time in this study. This parameter changes aong the
thickness.

2.1 Governing equations and boundary conditions

The principle of minimum potential energy states that:
(5T ~oU +ow)dt =0 ©)

The strain energy variation of the structure can be obtained as follows:
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Where the classical and non-classical force and momentum are defined as below:

Y,, \ 6

)i5v
06

+(

h/2
(Nxx' NHH' Nxé’) = I_hlz(axx’gﬂe’gxﬂ)dz’

h/2
(M XX ? M 00 M x6) = J._h/Z(O'XX,U%,O'XQ)ZdZ,
h/2
(sz’Qze) = .[th2 ks (O-xz ,O'Zg)dZ,

h/2
(Yxx’Yea’Yzz’Yxa’sz’Yza) :j_h/z(mxx’mﬁe’m mx&’m mza)dz’

7z Xz

h/2
(TXX’THO’TZZ’TXO’TXZ’TZO) = J._hlz(mxx’mee’m mx&’m mze)ZdZ

7z Xz !

The kinetic energy variation of the cylindrical shell can be expressed as:
Y su 2 5y )+

sT=[[[pzT)y & o Rdxdz d@
s (6_v+281//9)(ﬁ5\,+ Zié‘w )+(8_W)2§W
ot ot ot ot ¢ ot ’ ot

Also the variation of work done by the surrounding elastic medium can be written as:

2
Yoy O s lRdxde

(7)

(8)

9)
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i . (10
j“’zj [ K,ow-K, 9 % | swRdddxdz
2 x| R0

Substituting Egs. (7), (9) and (10) into (6) and integrating by parts, the motion equations and
boundary conditions for one layer of FG cylindrical microshell are obtained using the
modified couple stress theory and first order shear deformation shell model as bellow:

For inner nanotube:

ON' 10N', 1 oy ', oY’
+= +— (= + )+
OX R 06 2R 06 06
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For outer nanotube:
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Finally, by substituting EQ.(8) into Egs. (11)-(12), the governing equations for each layer of

the structure can be obtained. Also, associate boundary conditions for each nanotube are as
below:
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oy, =0 or
1 0T, Y
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For example:

The clamped boundary conditions at x=0, L:

The simply supported boundary conditions at x=0, L:

v=w=y, =0,
15
(N, +o= 2y =0, (M, + 2222+ 22) <0 )
4R 08 4R 86’

3 Solution procedure

Generalized Differential Quadrature method (GDQ) has comprehensively used to solve the
governing equations of motion in such structures, Ghadiri et al [16]. Surveying the literature
reveals the shortcoming of investigations on the vibration analysis of the moderately thick
cylindrical micro-shell considering the modified couple stress and centrifugal force.

In this study, GDQ method is used to calculate the spatial derivatives of field variables in
equilibrium equations. In the implementation of GDQ, Grid points describe the locations of
calculated derivatives and field variables. Thus, the "r — th" order derivative of a function
"f(x)" can be defined as the linear summation of the function valueswhich is:

0" f (x)
ox'

=3¢ (x) (16)
Where, n isthe number of grid points along the x direction. Also, Cjjis obtained as follows:

M(') N
T .

o

j=Lizj
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and M isdefined as:

n

M(x)=TT (x-x) (18)

j=Lj=i

Superscript "r" is the order of the derivative. Also, C" is the weighing coefficient along the x
direction, which could be written as:

C__(f—)
r[Cij“l)Cij(l) —( l )] i#jand2<r<n-1
r =T
c," = ) (19)
—ZC“(” i=jandl<r<n-1
i=Liz]

In order to obtain a better mesh point distribution, Chebyshev-Gauss-Lobatto technique has
been defined:

= %[1_ COS[ ((lil_—ll)) ”B =123 ...n (20)

The degrees of freedom of each layer of the structure can be assumed as follows:

u(x,0,t) =U(x,0)e',

v(x,0,t) =V (x,0)e,

w(x,8,t) =W (x,0)e'*, (21)
v, (X,0,1) =¥ (x,0)e",

w,(x,0,t) =F,(x,0)e".

Substituting Eg. (21) into the governing equations turnsit into a set of algebraic equations
expressed as.
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Applying GDQ method into the motion equations of the double cylindrical FG micro-shell i.e.
Egs. (10), the solution of the proposed eigenvalue equations in the form of Eq. (27) would
lead to the natural frequencies where the extracted components of [M] and [K] are present.

[M]a)2+[K]=O (27)
4 Results

The numerical results of the vibration behavior of double layer cylindrical FG microshell are
investigated based on the MCST for the various boundary conditions. Sufficient number of
grid points is necessary to achieve accurate results in GDQ method. As it is shown in Table
(1), for the good results, 31 grid points are appropriate. The Results are shown and analyzed
in two sections. The first one verifies proposed model with existing literatures. Second section
shows the effect of length, thickness, FG power index, Winkler and Pasternak coefficient and
shear correction factor on the natural frequencies of double cylindrical FG microshell.

Table 1 The effect of the number of grid points on evaluating convergence of the natural frequency(GHz) of the
double FG cylindrical microshell with respect to the different FG power index, boundary conditions (B.Cs) and
Ly=L,=10um, L,/R;=10, hy=h,=R;/10, l;,=14um, l;:=li1n/2, lim=lopm, Lic=l3c, K,,=1€14, K,,=0, R,=1.125X
R,

B.Cs FG power N=15 N=19 N=23 N=27 N=31 N=34
index (m)

Only metal 0.48146166 0.48146166 0.48146166 0.48146166 0.48146166 0.48146166

SS 1 0.68933699 0.68933699 0.68933699 0.68933699 0.68933699 0.68933699
SS 10 0.80166448 0.80166448 0.80166448 0.80166448 0.80166448 0.80166448
Only ceramic  0.82412107 0.82412107 0.82412107 0.82412107 0.82412107 0.82412107

Only metal 0.56806511 0.56794809 0.56794649 0.56794853 0.56794852 0.56794852

c-s 1 0.87162888 0.87146831 0.87144774 0.87145249 0.87145264 0.87145264
CS 10 1.03504190 1.03490931 1.03489181 1.03489577 1.03489582 1.03489582
Only ceramic  1.06745638 1.06732910 1.06731387 1.06731751 1.06731752 1.06731752

Only metal 0.66162622 0.66164744 0.66164278 0.66164272 0.66164274 0.66164274

c.c 1 1.06307791 1.06314833 1.06313858 1.06313795 1.06313800 1.06313800
cC 10 1.27890989 1.27897364 1.27896266 1.27896217 1.27896221 1.27896221

Only ceramic  1.32155387 1.32161012 1.32159908 1.32159869 1.32159873 1.32159873
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4.1 Results verification with other articles

Table (2) is presented to show the agreement of present results with those reported by other
scholars with different theories. Effects of changing the thickness to radius ratio (h/R) and FG
power index are observable.

Table 2 Comparison of the fundamental natural frequency (Hz) of one layer cylindrical FG shell
structure for different cylindrical shell theory against h/R ratios with (L/R=20)

h/R m=0 m=0.5 m=0.7 m=1 m=2 m=5 m=15

0.020 13.552 13.325 13.273 13.215 13.107 13.001 12.936

Classical 0.030 13.557 13.330 13.278 13.220 13.112 13.006 12.941

theory[18]

0.040 13.563 13.336 13.284 13.226 13.119 13.013 12.948

0.050 13.572 13.345 13.293 13.235 13.127 13.021 12.956

0.020 134172 131924 131405 13.0828 129758 12.8710 12.8065

Higher-order 0.030 134220 13.1971 13.1451 13.0874 129804 12.8756 12.8111
deformation
theory [19] 0.040 134287 13.2037 13.1517 13.0939 129869 12.8820 12.8175

0.050 134373 132121 131601  13.1023 129952 12.8903 12.8257

First order 0.020 135156 132804 132375 13.1797 13.0722 129668 12.9019

shear . 0.030 135204 13.2941 13.2422 13.1845 13.0769 129715 12.9065
deformation
theory 0.040 135271 13.3008 13.2489 13.1911 13.0835 129780 12.9130

(Present) 0050 135356 13.3093 132574 13.1995 13.0919 12.9863 12.9212

With increasing the power index, the natural frequency enhances in al thicknesses; increasing the
thickness leads to increase in frequency as well. Note that, all results of this table are related to
natural frequency (Hz) of asimply supported cylindrical FG shell.

Another validation has been done by Ghadiri and safarpour [18]. As Fig. (1) demonstrates, thereisa
good accuracy in obtained natural frequencies of the FG microshell especially with increasing the
length.
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Figure 1 Comparison of the natural frequency of FG cylindrical shell with the results obtained by
Ghadiri et al.[18]

4.2 Parametric results

The material for inner and outer cylindrical microshell is FGM. It is assumed that the inner
surface is ceramic and the outer one is metal. Volume fraction index (m) determines the
variation profile of the material properties across the thickness of the FG cylindrical
microshell. The material properties are givenin Table (3) as below:

Table (4) shows the effect of shear correction factor, thickness, Winkler and Pasternak
stiffness coefficient on natural frequency under the various boundary conditions. As it can be
seen from Table (4), an increase in shear correction factor leads to an increase in the natural
frequency. This trend is observed under all types of boundary conditions. In addition, the
increase in the Winkler and Pasternak stiffness coefficients results in considerable increase in
natural frequency. Simply-Simply boundary condition has the lowest frequency because of its
particular condition, and Clamp-Clamp boundary condition has the highest frequency. In
addition, the effect of Pasternak stiffness coefficient (K,,) has remarkable effect on the natural
frequency in comparison with the Winkler stiffness coefficient.

Also, by increasing the thickness, the natural frequency tends to decrease.

Table 3 Material properties of FGM constituents [16].

Material properties Unit Aluminum Silicon
E GPA 70 210
o Kg/m? 2700 2370

v - 0.3 0.24
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Table 4 Variation of the fundamental natural frequency, with different thickness of adouble layer FG cylindrical
microshell for different shear correction factor, winker and Pasternak stiffness with various boundary conditions
and L,=L,=10um, L,/R,=10, hy=h,, li,=14um, 1, .=lin/2, i =lom, Lic=lse, R,=1.125% Ry, m=1

B.Cs K,=0 K,=100
Ks=0 Ks=5/6 Ks=0 Ks=5/6
SS K,= K,= K, = K, = K, = K,= K,= K, =
lel4d lel5 lelq lel5 lel4d lel5 lel4d lel5
hy(um)
0.1 0.687427 1.19883 0.689337 1.20122 0.778507 1.24393  0.780368  1.24645
0.2 0.636747 0.961331 0.641959 0.965259 0.692019 0.990906 0.696887 0.994775
0.3 0.617666 0.863184 0.628401 0.871239 0.657995 0.886043 0.668113 0.893923
SC
hy(um)
0.1 0.866874  1.331686 0.871628 1.336483 0.947203 1.374034 1.378875 0.951737
0.2 0.8242185 1.112314 0.833975 1.120407 0.871081 1.139584 1.147561 0.880383
0.3 0.8086962 1.022929 0.825464 1.036825 0.842069 1.043792 1.057477 0.858198
ccC
hy( (pm)
0.1 1.055548 1484719 1.063078 1.492008 1.12715 1.524666 1.134418 1.531971
0.2 1.018709 1279139 1.034333 1.292736 1.059203 130451 1.074339 1.317973
0.3 1.005598  1.196397 1.031063 1.218672 1.03397 1.215613 1.058798 1.237657

It can be seen from Figs. (2)-(4) that the increase in length leads to the increase in natural
frequency. Figs. (3)-(5) show the effect of the length on natural frequency (GHz) of double
cylindrical FG microshell with different boundary conditions and R,=1um, h,=h,=R,/10,
Lim=14um, 1y =l /2, L =lm, L =1y, Ky =1€14, K,=100, R,=1.125X R;.

This is because increasing the length is eventuated to decrease in stiffness and natural
frequency of the double FG cylindrical microshell. Other results are that, the double
cylindrical microshell which, is made of only metal, has the lower frequency in comparison
with that one which is made of only ceramic. The other remarkable point is related to Fig.(3)
where the effect of length on natural frequency of simply-simply boundary condition is less
than two others.
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Figure 2 The effect of length on the natural frequency with simply-simply boundary condition
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Figure 3 The effect of length on the natural frequency with clamp-simply boundary condition
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Figure 4 The effect of length on the natural frequency with clamp-clamp boundary condition

Figs. (6)-(8) illustrate the effect of Winkler foundation on natura frequency of double
cylindrical microshell for the case where L,=L,=10um, L,/R,=10, h,=h,=R;/10, l,,,=14um,
Lic=lim/2, Lim=lam, Lic=lyc, Kp=100, R,=1.125x R;. Figures (6-8) respectively are related to
the simply-simply, clamped-simply and clamp-clamp boundary conditions. As one can seein
all three figures, with increase in Winkler stiffness coefficient, natural frequencies increase.
Also increase in FG power index leads to increase in natural frequencies. In simply-simply
boundary condition, frequency variations are modest again. Figs. (5)-(7) show that with
considering the coefficient of Pasternak, there is an exceptional trend by increasing Winkler
coefficient, at first frequency increase and reach to a peak point then the natural frequency
tends to be constant in al boundary conditions.
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Figure 5 The effect of Winkler stiffness coefficient on the natural frequency with
simply-simply boundary condition
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Figure 6 The effect of Winkler stiffness coefficient on the natural frequency with
clamp-simply boundary condition
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Figure 7 The effect of Winkler stiffness coefficient on the natura frequency with
clamp-clamp boundary condition

Figs. (8)-(10) illustrate the effect of Pasternak foundation on natural frequency with
L,=L,=10um, L,/R{=10, h,=h,=R,/10, l1,,=14um, 1, .=lin/2, Lim=lom, Li:=l5c, K,=1€14,
R,=1.125x R,. Figures (8)-(10) respectively are related to ssimply-simply, clamped-simply
and clamp-clamp boundary conditions; as it is obvious in all figures with increase in
Pasternak stiffness coefficient the natural frequencies tend to increase.
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Also increase in FG power index causes to increase in natural frequencies. Also this kind of
foundation has more influence on frequency in comparison with Winkler. In simply-simply
boundary condition, frequency variations are modest again. Figs. (8)-(10) show that with
considering the coefficient of Winkler, there is an exceptiona trend by increasing pasternak
coefficient, at first frequency increase and reach to a peak point then the natural frequency
tends to be constant in al boundary conditions.
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Figure 8 The effect of Pasternak stiffness coefficient on the natural frequency with
simply-simply boundary condition
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Figure 9 The effect of Pasternak stiffness on the natural frequency with
clamp-simply boundary condition
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Figure 10 The effect of Pasternak stiffness coefficient on the natural frequency with
clamp-clamp boundary condition
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5 Conclusion

This paper presents the free vibration analysis of double layer cylindrical microshell
surrounded by elastic foundation, with the inner and the outer layers made of a functionally
graded material. Modified couple stress theory introduces the size-dependent effect. The
equations of motion and non-classic boundary conditions are derived using Hamilton's
principle. The natural frequency of the double layer cylindrical FG microshell are investigated
with respect to the length, thickness, FG power index, Winkler and Pasternak coefficient and
shear correction factor for different boundary conditions of the double layer cylindrical FG
microshell. The following important results can be obtained from this study:

1- By increasing the length and thickness the natural frequency tends to decrease while,
by increasing the FG power index, the natural frequency increases.

2- Simply-simply boundary condition has the lowest natural frequency because of its
particular condition, and Clamp-Clamp boundary condition has the highest natural
frequency.

3- The results show that, increase in the length to radius ratio and material length scale
parameter lead to increase in the critical speed of the rotation FG cylindrica
microshell.

4- By considering the coefficient of Winkler and Pasternak, there is an exceptional trend
by increasing Winkler and Pasternak coefficient, at first frequency increase and reach
to a peak point then the natural frequency tends to be constant in al boundary
conditions.
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Nomenclature

E Bulk elastic modulus

p Mass density

u Components of displacement vector

7 Components of infinitesimal rotation vector
T Kinetic energy of the cylinderical shell

Kp Pasternak coefficient

Ky Winkler coefficient

c™ Weighing coefficient along the x direction
Xij Symmetric rotation gradient tensor components
&ij Strain tensor components

0 Stress tensor components

mi; Higher order stress tensor components

w Work done by sorrounding elastic medium
I Strain energy of the structure

n Number of grid points along the x direction
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