
 
 

 

 

Model-based Approach for Multi-sensor Fault 
Identification in Power Plant Gas Turbines 
In this paper, the multi-sensor fault diagnosis in the exhaust 
temperature sensors of a V94.2 heavy duty gas turbine is 
presented. A Laguerre network-based fuzzy modeling 
approach is presented to predict the output temperature of 
the gas turbine for sensor fault diagnosis. Due to the 
nonlinear dynamics of the gas turbine, in these models the 
Laguerre filter parts are related to the linear dynamic part of 
the models and the nonlinear parts of models are considered 
as neuro-fuzzy models. In order to deal with the 
dimensionality problems associated with fuzzy models, the 
nonlinear parts of models are considered as hierarchical 
fuzzy systems. In the residual evaluation phase, model error 
modeling adaptive threshold approach is used to increase 
fault detection robustness against the noise and disturbance. 
A new expert fuzzy system by multi-sensor information fusion 
is presented for the fault diagnosis system, which can 
examine the performance of all the sensors simultaneously. 
The result shows that the proposed fault diagnosis system 
could considerably increase reliability and safety. 
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1 Introduction 
  

In recent years, increased competition in the energy market has made experts pay more attention 
to reducing the cost of repair and maintenance of industrial equipment. One of the strategies 
discussed in this context is to prevent possible problems in these machines, which is followed 
in the area of supervision and fault management of processes. Considering the importance of 
measuring equipment in the control and safety of the gas turbines, sensors’ fault diagnosis is 
one of the most important issues. Fault occurrence in the temperature sensors, wrong 
temperature measurements and consequently an unnecessary system trip can be incredibly 
costly and affect the overall operation of the plant [1]. In general, the methods employed for 
the sensor fault diagnosis can be divided into the three main categories of model-based [2, 3, 
4], data-driven [5], and signal-based techniques [6, 7]. In model-based fault diagnosis, either 
classic system identification or soft computing techniques can be used for model development. 
The former is mostly applicable to simple linear systems. Nonlinear mathematical models 
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developed based on soft computing approaches are mainly used in the fault diagnosis of 
complex processes [8]. The fact that it is not essential to know the exact physical structure of 
dynamical systems has made them very useful for modelling nonlinear systems such as 
industrial gas turbines [9, 10, 11]. In most soft model-based fault detection works, in fact, the 
soft model is a nonlinear static model, while the real system has a dynamic behavior. In other 
words, the behavior of the system is also dependent on the parameters’ values in the final 
moments [12]. For example, reference [13] was used a neuro fuzzy-based approach to provide 
nonlinear models for a gas turbine fault diagonal. In fact, the proposed neuro fuzzy models were 
nonlinear static models. Nonlinear orthonormal basis functions (NOBF) models can be 
employed to characterize the essential dynamical behavior of complex systems. Such models 
can be presented in the form of Laguerre network-based systems, in which a linear dynamic 
part (Laguerre filters) is followed by a non-linear static part (such as neural networks or fuzzy 
logic). Some advantages of Laguerre network-based models can be summarized as: their ability 
to describe the dynamics of a system with a small number of parameters, no need for the exact 
identification of dominant time constants or time delays, no needs for identifying the past terms 
of process variables and low sensitivity to the model order [14, 15, 16]. These models have 
been successfully employed in various industrial applications, including the works presented 
by Sanayei et al [17] and Jiafeng et al. [18].  As an important study in the field of dynamical 
soft modelling for fault detection, Mrugalski presented an identification method for designing 
dynamic GMDH neural networks for robust fault detection using an unscented Kalman filter 
[19]. Serdio et al. introduced the vectorized time-series models by using multivariate orthogonal 
transformation in data-driven system identification models to achieve residual-based fault 
detection in systems with multi-sensor networks [20]. Asgari et al. presented a nonlinear 
autoregressive exogenous (NARX) models for a single shaft gas turbine. The results showed 
that the proposed NARX models, successfully models the dynamic behavior of the system [21]. 
    In this study, a Laguerre network-based hierarchical fuzzy system model is presented in order 
to predict the output temperature of a Siemens V94.2 heavy duty gas turbine. Hierarchical fuzzy 
structures enable fuzzy techniques to identify and model complex systems with a high number 
of inputs [22]. Input parameters enter the hierarchical fuzzy model after entering the 8-order 
Laguerre network. The hierarchical fuzzy model has two layers. The first layer comprises four 
Sugeno types of fuzzy models with nine inputs, where each model is considered to be associated 
with one of the parameters. The second layer includes a Sugeno type model with four inputs. 
The structure of models and the parameters of membership functions are defined by fuzzy c-
mean clustering approach, where the parameters of fuzzy rules are adjusted using recursive 
least-squares estimation (RLS) technique. In the model-based fault detection process, the fault 
will be identified using the residuals estimated as the differences between the model outputs 
and the sensor measurements. Due to inherent uncertainties in the models, the deviations of the 
models’ output from the measured value may not indicate an actual fault. These deviations often 
depend on the amplitude and frequency of inputs. Considering a threshold on the estimated 
residual is one way to deal with this problem; however, the threshold range may not be constant 
at different operating conditions [23].  In this case, a robustness feature can be added to the fault 
diagnosis procedure by using active or passive approaches [24]. In the active methods, a suitable 
performance factor is generally defined to optimize the objective that attributes higher 
sensitivity to faults and more robustness against noise and disturbance. Active robust fault 
diagnosis methods are often used for linear systems [25, 26]. The main disadvantage of these 
methods is that they are neither suitable nor applicable to the complex nonlinear real industrial 
applications [3]. Passive methods are the alternatives to the active approaches and often use the 
adaptive threshold methods and are more practical in the real industrial applications in 
comparison to the active approaches. This advantage is due to the feasibility of using soft 
computing methods in order to generate the adaptive threshold for these systems [3, 24, 27].  
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The simple threshold approach which is commonly used in many tasks by various criteria is 
less accurate compared to the adaptive threshold approach [26].  Model error modelling (MEM) 
is one of the important approaches, which is employed to achieve robustness. In this approach, 
a model is responsible for creating the adaptive threshold by predicting the residuals [28].  
In this study, a neuro-fuzzy model is used to create the adaptive threshold. Multiple sensors 
have been employed in various systems to achieve an accurate understanding of important 
information and redundancy [29]. Gas turbines exhaust temperature is one of the most important 
control parameters in the gas turbine cycle. In the fault diagnosis section of this paper, multi-
sensor fault detection, using high-level information fusion (Decision-level fusion), has been 
employed. Multi-sensor information fusion can be used to develop a more accurate and reliable 
fault detection system [30].  In this study, an expert fuzzy system is presented, which works 
based on (sensors and soft models) residual information for fault detection. In model-based 
fault detection methods, malfunction of the models to correctly predict the behavior of systems, 
which can result in an increase in the number of false alarms, is among the main concerns. The 
proposed multi-sensor fault detection fuzzy system, intended to deal with this problem, allows 
us to recognize the possible malfunctions of soft models and also faults in models’ inputs.  
    This paper is organized as follows: section 2 presents a brief description of the gas turbine 
and datasets. In section 3, the procedure of the modelling and implementation of Laguerre 
network-based hierarchical fuzzy system is presented. In section 4, first, the adaptive threshold 
method is explained, and then the implementation of the error model in the adaptive threshold 
generation is introduced. Section 5 is dedicated to the implementation of the proposed fault 
diagnosis method. Finally, the conclusion is presented in section 6. 
 

2 System and dataset description 
 

The temperature sensors’ failure would cause non-optimal operation of gas turbines, undesired 
system trips, and severe damages to components. In this study, a Laguerre network-based 
hierarchical fuzzy system model is used to predict the output temperature of gas turbines for 
the proposed model-based fault detection. Figure (1) illustrates the mechanism of the fault 
detection and isolation of gas turbine output temperature sensors. 
  In this paper, a 5th generation 94.2 ( 5 2000 )V SGT E heavy-duty gas turbine engine is 
considered. The compressor pressure ratio (CPR) and the mass flow rate of the turbine are 11.8  
and 535 /kg s , respectively and the turbine inlet temperature reaches up to1348.15  (1075 )K C  
when the engine runs in ISO condition. At this operational state the heat transfer rate is 
10432 /kJ kWh  which cause fluid yielding the turbine exhaust temperature to reach 547 C  The 
gross power output is 166MW and the gross efficiency is 34.5 percent at 50Hz frequency. 
In the proposed model, a set of four variables, including compressor outlet temperature, inlet 
guide vane (IGV) position, compressor maximum discharge pressure, and fuel flow rate are 
utilized as inputs to predict the gas turbine engine exhaust temperature. The exhaust temperature 
is measured by six sensors mounted in the circumference of the exhaust cross-section of the 
turbine in 60o intervals. The sensors’ data is collected in a 9500 s time with a sampling rate of 
1 s. This data acquisition period spans the transient and steady state operation of the engine as 
the load increases from 39.5 to the full load condition. In the next step, the recorded data is 
divided into training, validation and test data, of which 60 (or 5700 samples) is employed for 
the model training, 20% (or 1900 samples) is used for validation, and the remaining 20%  is 
dedicated to the testing phase.  It should be noted that changing the environmental parameters 
such as temperature and humidity can cause disturbances in gas turbine. Compressor outlet 
temperature is one of the parameters that can suffer disturbances.  
In addition, as a result of environmental disturbances, the inlet guide vane position and fuel 
flow rate can be changed by the controller’s command. 
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Figure 1 An overview of sensor fault detection and isolation 

 

 

3 Laguerre network-based hierarchical fuzzy system model 
 

3.1 Laguerre based network fuzzy system 
 
Nonlinear autoregressive exogenous model topology (NARX) is a common method to describe 
the nonlinear behaviors of dynamic systems. The behavior which can be presented as a discrete 
time nonlinear mapping on some previously measured outputs and inputs is given as 

( ) ( ( ),  ( 1),  ..., ( ),  y(k-1), y(k-2), ...,y(k-n ))u yy k f u k u k u k n   (1)

   where un and yn are the number of past sample data of input and output respectively, which 

contribute to the current output calculation ( )y k . They also represent the dynamic order of the 
system. In the above equation, (.)f   is a nonlinear operator that can adopt either a neural 
networks, fuzzy systems, or polynomials mapping functions. In NARX models a direct 
feedback structure is often used to stabilize the dynamics of the system. However, feedback 
loops can result in error accumulation in the system. 
 

Figure 2 a) Structure of Laguerre network based fuzzy model, b) 
Laguerre network with hierarchical fuzzy structure 
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Removing the output feedback can improve the handling of consistency problem in NARX 
models [31]. This is implemented, as expressed in Eq. (1), by using the delayed input and output 
signals. By replacing the delay shift operators in Eq. (1) with orthonormal basis functions such 
as Laguerre and Kautz basis, the model can be improved [32, 33]. This structure is known as 
nonlinear orthonormal basis function (NOBF), which is categorized in the class of Wiener type 
models [34]. A Laguerre network based model is expressed as 

0 1( ) ( ( ) ( ),  ( ) ( ),..., ( ) ( ))ay k f l k u k l k u k l k u k      (2) 

where ( )il k s are Laguerre basis filters. In our method, the nonlinear mapping function, (.)f , 

employs a fuzzy logic system, that is, Laguerre network based fuzzy model (LNFM). The 
nonlinear system dynamics can be approximated by applying an interpolation scheme on the 
local models via a fuzzy inference mechanism. The fuzzy regions are described by the 
antecedents in the input space, while the consequents describe the local linear models in the 
corresponding fuzzy subspaces [35, 36]. In Figure (2-a), the structure of a LNFM is presented, 
in which ( , )aL z   is a discrete time representation of ( )aL k  in z -domain. In complicated 

dynamic systems, the outputs are often dependent on numerous variables of the system. Despite 
the good performances of LNFM models, increasing the number of variables and the size of 
training dataset is problematic for the training of the fuzzy systems. This is referred to as a 
“curse of dimensionality” or “fuzzy rule explosion” problem [32, 37]. When the dimensions of 
data sets are increased the number of tuneable parameters rises. 
   To deal with the aforementioned problems, employing hierarchical fuzzy systems (HFS) to 
model the nonlinear part of the system is an appropriate approach [38]. In Addition, employing 
data clustering techniques with the purpose of reducing the number of fuzzy rules and the 
corresponding tuneable parameters is advised [39, 40]. The nonlinear part of the model, 
illustrated in Figure (2-b), is a hierarchical fuzzy structure. Four LNFM outputs are adopted as 
the inputs of the mapping function (.)g , which is a fuzzy logic model, as well. 
 
3.1.1 Laguerre Filter 
 
Discrete time Laguerre functions as complete orthonormal set in z -domain is given by 

2 1

1 1

1
( , ) ( )        ,i=0,1,2,...

1 1
i

i

z
L z

z z

 
 
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  


 
 

 (3)

where  :| | 1     is the pole parameter that determines the rate of the exponential decay of 

the Laguerre functions responses. The dominant pole   is an adjustable parameter determined 
experimentally or through an optimization scheme [41]. It is possible to use the system 
identification technique to fit a first order model on input-output data set and capture the process 
time constant [17]. A linear discrete time system ( )H z is represented as 

0

( ) ( ) ( , )i i
i

H z b L z 




  
(4)

The Laguerre coefficients, represented by ( )ib   in the above equation, are 

1 11
( ) ( ), ( , ) ( ) ( , )

2i i iC
b H z L z H z L z z dz

j
  


    �  

(5) 

in which C is a circle of radius higher than 1 and lower than 1| |  , defined as 
1| |{ :1 | | }C z z     �  [42].  For physical systems, the transfer function, ( )H z , can be 
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approximated by the limited order of Laguerre polynomial [41]. Thus, for a truncated model 
with ( 1)   stages, the transfer function ( )H z is expressed as 

0

( )
( ) ( ) ( , )

( )

a

i i
i

Y z
H z b L z

U z
 



   
(6)

where ( )U z and ( )Y z  are the input and output of the system [41], therefore, the outputs are 

0

( ) ( ) ( )
a

i i
i

Y z b V z


  

And 

(7)

( ) ( ) ( , ),     0,1, 2,...,i iV z U z L z i a    (8)

A Laguerre network consists of a first order low-pass filter and ( 1)thi  order identical all-pass 
filters. By considering 0,  ( , )iL z   terms will turn into regular delay operators, and ( )H z  

into the usual FIR (finite input response) model. For each region at input space, a local linear 
model is developed using the polynomial presented in Eq. (6). 
 
3.1.2 Neuro fuzzy system 
 
The nonlinear mapping functions, (.)f ,  (.)g , are assumed to be of the first order Takagi, 
Sugeno and Kang (TSK) type of fuzzy models. In the TSK model, the fuzzy if-then statements 
are formed in a network structure, namely a neuro-fuzzy system [43]. The TSK fuzzy system 
can be trained by neuro-computing method or other soft computing methods, one of which is 
known as the adaptive neuro-fuzzy inference system or ANFIS [44]. The first order TSK fuzzy 
model adopts a set of if-then statements in the form of 

0 ,1 , 1 ,( 1) ,
0

:       if (  is  A  and ...  is  A ) then  y ( ) ( )
a

i i a i a i i a i j j
j

R v v k b b v k 


   
(9)

as its rule base. In Eq. (9(, ,i jA  are the membership functions associated with thj  input variable. 

In this structure, a linear combination of the input variables are considered as the conclusion 
functions of fuzzy rules. The firing degrees of the fuzzy rules are calculated through the five 
fuzzy layers. The weighted sum average according to rule iR is 
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(10)

where N  is the number of inputs in the fuzzy system which equals 1a   and the number of 
fuzzy rules (the number of cluster centers) is expressed by c . The membership functions, ,i jA , 

are Gaussian specified by the center   and the spread   specified as 

,

, 2
, ( ) exp[ ( ) ]

i j

r i j
i j r

x
A x





   
(11)

It is noted that by increasing the number of inputs and their associated membership functions, 
the number of fuzzy rules would exponentially increase. As a result, the computation efforts for 
training the fuzzy rules increase significantly. In this case, the fuzzy c-means (FCM) algorithm 
could be employed in order to define the fuzzy model structure and reduce the number of fuzzy 
rules. The FCM algorithm is the most common fuzzy clustering algorithm. This algorithm 
divides the data set into c  subsets presented by fuzzy sets as 1{ ,..., }cF F F , based on the 

similarity/dissimilarity of each cluster member. In general, this is defined by the distance of 
data points from the centers of clusters [45].The distance between iq  and jz  is defined 
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, ( ) ( ) ( )T

i j r j i j i j id x z q z q z q      (12)

 
where 1{ , ..., } s

cQ q q R   and 1{ , ..., } s
nZ z z R   are the vector of cluster centers and 

unlabeled data set, respectively. In order to find the best possible solution, the following 
objective function has to be minimized 

2
, ,

1 1

min : ( , ) ( )
n c

m
m i j i j

j i

J M Q d
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   
(13)

where ,[ ]i j c nM    and ,i j  are the membership degrees of the thj   data point in the thi  

cluster. In Eq. (13), the weighting exponent (1 )m m   controls the fuzziness degree of each 
cluster. The minimization of mJ   is performed by applying the following constraints on the 

membership values which, leads to the optimal partition 

, ,
1

 1,...,   ,   1,..., 1  and 0 < 1
c

i j i j
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The optimal membership functions is captured using Eq. (13) and Eq. (14) as 
2

, 11
,

1 ,

[ ( ) ] ,     1    1
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d
i c j n

d
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(15)

 
Once no further improvement is observed in ( , )mJ M Q , the optimization process will terminate. 

It is required that the number of cluster centers be defined. Increasing the number of the clusters 
potentially enhances the accuracy of the model; however it may lead to model over-fitting and 
undesired computation cost. To find the optimal number, a cluster validity index can be 
employed to determine the optimal number of cluster centers in the data set. Various validity 
indexes are available [46]. 
 
3.2 Implementation 
 
Here, the proposed Laguerre network based hierarchical fuzzy system model (LNBHFS) is 
considered to be a model with four inputs and six outputs. The inputs are: compressor outlet 
temperature, IGV position, compressor pressure ratio (CPR) and fuel flow rate. The model 
outputs estimate the six temperature sensors located at the exhaust of the gas turbine engine. 
With respect to the location of the sensors, they may show different temperatures and therefore, 
they should be modelled independently.  
    Figure (3-a) shows a schematic of the six sensors' model, and a more detailed schematic of 
LNBHFS for sensor 1 is presented in Figure (3-b). It is noted that this structure is considered 
the same for all the LNBHFS blocks in Figure (3-b). For a Laguerre network-based model, the 
appropriate order of the model should be chosen in order to minimize the modelling error. It is 
shown that for a single sensor with a single input, eight order Laguerre filters yield better results. 
Therefore, hierarchical fuzzy system (HFS) is introduced due to the increase in the number of 
inputs.The dominant pole parameters and the order of the Laguerre filters are required to be 
estimated. It is possible to use the system identification technique to fit a first order model on 
input-output data set and capture the process time constant [17]. Here, the order of the filter is 
chosen to be 8a  , which is an appropriate trade-off between the complexity and the accuracy 
of models. A combination of fuzzy c-mean clustering, recursive least-squares and back 
propagation methods are used for training FIS parameters. 
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Figure 3 a) overall structure of the LNBHFS related to temperature sensors,  
b) structure of LNBHFS1 model of the first temperature sensor 

 
First, the FCM clustering is employed to extract the number of fuzzy rules and the parameters 
of membership functions. Then the parameters of fuzzy rules are adjusted with respect to the 
input-output data. The data set is split into three subsets of 60 , 20 , and 20  percent of the data, 
which are assigned to the training, validation and testing sets, respectively. In the validation or 
checking phase, the best structure, i.e., the number of the rules is selected for fuzzy systems. In 
all the three categories of training, validation and testing data, transient and steady state data 
exist. 
 
3.3 LNBHFS models evaluation 
 
In section Implementation, the soft model for the temperature sensors were implemented. In 
Figure (4), the error related to the validation phase of the developed fuzzy models for the 
temperature sensor#1 (LNBHFS1) with different numbers of rules is shown (for normalized 
data). According to the validation phase results, the optimal number of rules for each fuzzy 
system in the soft sensor#1 (LNBHFS1) is obtained from Figure (4). So, the optimality criterion 
is the lowest RMSE error in validation phase. The obtained results for LNBHFS1 responses are 
presented in Table (1). In addition, in Table (2), the root mean square error (RMSE) of the six 
temperature sensors in each phase of the training, validation and testing are presented. As an 
example of the test phase, a comparison between the output of the developed soft model for one 
of the temperature sensors (sensor#1) and the real values is presented in (5). The LNBHFS1 
model receives four inputs of testing data (including compressor outlet temperature, inlet guide 
vane position, compressor maximum discharge pressure and fuel flow rate) to estimate the 
temperature sensor#1, which is shown by red dashed line in Figure (5). In this figure the 
sensor#1 measured values are shown by the blue line. As can be seen, the model outputs match 
very well with the measured values. 
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Table 1 Details of fuzzy systems for LNBHFS1 

Model FIS Structure RMSE ( 310 ) 
Input Rule Train Validation Test 

 
 

LNBHFS1 

Fis1,1 9 7 2.4 2.6 2.4 
Fis1,2 9 6 2.7 2.6 3.0 
Fis1,3 9 6 2.7 3.1 3.3 
Fis1,2 9 8 2.2 2.7 2.8 
Fis1,5 4 5 1.3 1.7 1.8 

 
 

  
Figure 4 Validation error for LNBHFS1 fuzzy systems with different rules 

 
Table 2 Root mean square error for each of the models 

RMSE ( 310 )  
Model Testing Validation Training 

1.8 1.7 1.3 LNBHFS1 
3.8 3.6 3.0 LNBHFS2 
2.7 2.0 2.0 LNBHFS3 
2.4 2.2 1.9 LNBHFS4 
1.9 2.1 1.8 LNBHFS5 
2.0 1.9 1.9 LNBHFS6 

 

  
Figure 5 Comparison between the model output with actual values for sensor one  
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4 Adaptive threshold  
 
In gas turbine units, the changes in the parameters such as air temperature, humidity, inlet 
pressure, fuel quality and load changes are the main sources of disturbances [47]. In the model-
based fault detection process, due to uncertainties and disturbances, the developed model 
responses may not describe the real system behaviors very accurately. This may cause undesired 
deviations in the generated residuals and result in false alarms in fault detection [48]. 
The adaptive threshold methods are designed such that the deviations of the measured values 
from model output depend largely on the amplitude and frequency of inputs, noise, and 
disturbance. In a simple model, we can consider these variations as a function of ( )U t , 

representing the static, and ( )U t , denoting the dynamic input. In complex systems, however, 
the classical methods are not sufficiently accurate. In these systems, as mentioned before, the 
soft computing based methods are used to model the system uncertainties such that after 
obtaining the residual, ˆR y y  , a soft computing model, known as the error model, is 
identifiable. Thus, the inputs and outputs of the error model are the system inputs and residuals, 

denoted by R̂ , respectively [28]. In the next step, the threshold upper and lower bounds are 
calculated as  

/
ˆˆ ( )u lT y R t v     (16)

where t  is (0,1)N  the tabulated value assigned to a given confidence level, (in this paper, 

considered 1t  ) and   is the standard deviation of sensors [49] .In Figure (6), fault diagnosis 

process is shown using adaptive residual. 
 
  Here, a neuro-fuzzy model is used for error modelling, which is discussed and in the following. 
To build the error model, the first step is to extract the residuals from the introduced soft sensors 
and use them as output for model training. Thus, the residual values are calculated from the 
models. In this section to avoid the complications, the Laguerre filter is not used in MEM, thus, 
the six fuzzy models with the inputs of compressor outlet temperature, IGV position, 
compressor pressure ratio (CPR), and fuel flow rate and one output (residual for each sensor) 
are generated. To do this, 60 %, 20 % and 20 % of all data is used in the phases of training, 
validation and testing, respectively. In the following, the simulation results of error model 
evaluation are presented. 
 
 
 

 
Figure 6 Fault diagnosis process using adaptive threshold 
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4.1 Error models evaluation 
 
As an example Figure (7) illustrates the output of the error model for sensor#3,and the residual 
values (related to LNBHFS3 and sensor#3). In Table (3) the specifications of each of the error 
models are presented. As shown in Figure (7) and Table (3), the proposed model to estimate 
the uncertainty of the system is reasonably accurate. It should be noted that due to the high 
accuracy of sensors, residual values are very small; hence, a very high accuracy should not be 
expected from the error models. As an example, the upper and lower bounds for the adaptive 
threshold and measured values for sensor#3 are illustrated in Figure (8). 
 
 

 
 

Figure 7 A comparison between residual values and error model output for sensor #3 
 

Table 2 Root mean square error for each of the models  

RMSE ( 310 )  
Model Test Validation Train 

1.3 0.9 0.8 MEM1 
1.7 1.3 1.6 MEM2 
1.4 1.1 0.7 MEM3 
1.0 1.2 0.9 MEM4 
1.1 1.3 0.8 MEM5 
1.4 1.3 0.6 MEM6 

 

 
 

Figure 8 Upper bound and lower bound of adaptive threshold compared with  
measured values of the third sensor
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Next, the performance of the presented adaptive threshold MEM approach against the 
disturbances is evaluated. As already mentioned, changing the environmental parameters, such 
as temperature and humidity and the process of compressor inlet air cooling system can cause 
of disturbances in gas turbine. Compressor outlet temperature is one of the parameters that can 
suffer disturbances. Thus, by applying some disturbances in the compressor outlet temperature, 
the residuals and adaptive threshold behaviors are examined. Figure (9) and Figure (10) depict 
the obtained results of applying two types of disturbance to the compressor outlet temperature 
respectively on sensor#1 and sensor#4. These figures illustrate the residuals and adaptive 
thresholds variations. In test data by adding the disturbances to the compressor output 
temperature, the difference between soft model output and the measured value increases. 
Therefore, the amount of residuals exceeds the fixed threshold, while as the MEM models work 
properly, adaptive threshold shows a quite robust behavior. It can be concluded that the adaptive 
threshold generator models are perfectly robust against disturbances, while the simple threshold 
approach exhibits fault in similar conditions. It should be noted that, the use of Laguerre 
network-based systems (or Laguerre filters) in soft model structure enhances the robustness of 
the fault diagnosis system against noise 
 
5 Fault detection and fault diagnosis 
 
In model-based fault diagnostic methods, there is always a concern that the model may not 
correctly predict the behavior of the system. For instance, if any of soft model input parameters 
is faulty, it is possible to see an incorrect value in the soft model output, because this type of 
data has not been used in the model training. To resolve this issue, we propose a parallel 
structure which realizes the soft model malfunction and the fault probability of the inputs. 
In the proposed method, the outputs of the six temperature sensors are compared with the output 
values calculated by the soft model, and the deviation from the adaptive threshold for each 
sensor is evaluated. These six deviation values determine both the accuracy of the model and 
the error detection in the sensors. Eq. (17) formulates the approach to calculate the deviation 
from threshold as 
 
 

Figure 9 Obtained results of applying disturbance in the compressor outlet temperature for sensor#1 

 

Figure 10 Obtained results of applying disturbance in the compressor outlet temperature for sensor#4 
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(17) 

 
In this work, the proposed method based on the fact that the six temperature sensors have been 
installed at various locations on the gas turbine exhaust and record different values. Because 
the possibility of the fault in multiple sensors at the same time is very small; Thus, the deviation 
from the threshold for more than two sensors is improbable and the soft model output is most 
likely untrue. This can be due to the soft model malfunction or other faults in the input 
parameters of soft model. 
    When of just two sensors exhibit significant deviations from thresholds, most likely the soft 
model is weak and less likely both sensors are faulty at the same time. When the five sensors 
do not deviate from threshold and the other sensor shows a large deviation, it can be said that 
the model output is correct and that one sensor is faulty. For such a case, the soft model output 
can also be relied on as a soft sensor. When the number of sensors with large deviations 
increases above three, it is more likely that the inputs are erroneous and less likely that the soft 
model is weak. To implement the multi-sensor fault diagnosis system, a Sugeno type fuzzy 
system with six inputs (number of symptoms) is adopted. In this system the number of outputs 
is eight, of which, the first six represent the sensors status, while output number seven and 
number eight show the soft model status and fault in inputs, respectively. 
   The number of membership functions at the inputs is three Gaussian functions and the number 
of functions on all outputs, except the eighth output, is three constant functions with values of 
[0 0.5 1] . The eighth output is five constant functions with the values of [0 0.25 0.5 0.75 1] . 
The output values are in the range of 0 to 1, which define the fault of each output. When no 
residual exceeds the thresholds all outputs will be zero. On the other hand, by dividing each 
output into total outputs, the relative probability of faults in each of the eight conditions 
becomes clear and the user or fault management system is notified to make a decision. The 
outputs of fault diagnosis system are expressed as the relative probability of fault in each of the 
eight states using Eq. (18) 
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(18) 

 
In Figure (11), the scheme of fuzzy fault diagnosis system is shown. The fuzzy fault diagnosis 
system has 70 rules some of which are listed in Table (4). 
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Figure 11 Schematic of fuzzy fault diagnosis system 

 
 
Table 4 Selection of the fuzzy system rules, S: small, L: large, VL: very large, -S: not small, large or very large 

R
ule N

o 

Input 1 

Input 2 

Input 3 

Input 4 

Input 5 

Input 6 

O
utput 1 

O
utput 2 

O
utput 3 

O
utput 4 

O
utput 5 

O
utput 6 

O
utput 7 

O
utput 8 

1 S S S S S S 0 0 0 0 0 0 0 0 
2 L S S S S S 2 0 0 0 0 0 0 0 
3 VL S S S S S 3 0 0 0 0 0 0 0 
4 S L S S S S 0 2 0 0 0 0 0 0 
5 S VL S S S S 0 3 0 0 0 0 0 0 
6 S S L S S S 0 0 2 0 0 0 0 0 
7 S S VL S S S 0 0 3 0 0 0 0 0 
8~13 … … … … … … … … … … … … … …
14 -S -S -S -S -S -S 0 0 0 0 0 0 3 5 
15 S -S -S -S -S -S 0 2 0 0 0 0 3 4 
16 -S S -S -S -S -S 0 0 0 0 0 0 3 4 
17~21 … … … … … … … … … … … … … …
22 S S -S -S -S -S 0 0 0 0 0 0 3 3 
23 S -S S -S -S -S 0 2 0 0 0 0 3 3 
24~36 … … … … … … … … … … … … … …
37 S S S -S -S -S 0 0 0 0 0 0 3 2 
38 S S -S S -S -S 0 2 0 0 0 0 3 2 
39~55 … … … … … … … … … … … … … …
56 S S S S -S -S 0 2 0 0 1 1 2 0 
57 S S S -S S -S 0 0 0 1 0 1 2 0 
58~70 … … … … … … … … … … … … … …

* e.g. Rule 23: IF Input1 is S AND Input2 is not S AND Input3 is S AND Input4 is not S AND Input5 is not S 
AND Input6 is not S THEN Output7 is 3 AND Output8 is 3 
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Figure 12 Deviation of the first sensors faulty signal from threshold and the output of fuzzy fault diagnosis 
system for sensor#1 

 
Figure 13 Deviation of the fourth sensors faulty signal from threshold and the output  

of fuzzy fault diagnosis system for sensor#4 
 
5.1 Fault detection and diagnosis result 
 
To evaluate the performance of the fuzzy fault detection and the fault diagnosis system in 
different failure cases, artificial faults are applied to the sensors and the responses of intelligent 
system are examined. Three different types of fault can occur in measurement systems such as 
sensors, which include an increase in amplitude of noise, complete failure and deviation from 
actual value. Among these faults, detection of deviations from the actual value is more difficult 
which in this paper tried to detect this fault. For this aim, a ramp signal with a slight increase is 
added to the measured values for a certain period of time. In the first case, the occurrence of 
faults in only one sensor is investigated, where the other five sensors operate correctly.  
The obtained results for sensors#1 and #4 are shown in Figure (12) and (13), respectively.  
For sensor#1, the artificial fault signal is added to the sensor output from samples 300 to 700. 
Similarly, for sensor #4, a fault is applied to the sensor from sample 800 to 1100. 
    The results show that fuzzy fault detection system can perfectly recognize the sensors’ fault 
in both cases. Fluctuations in some parts of the fault probability signal indicate that one or more 
sensors’ output may deviate from the upper bound threshold of the soft models. Therefore, the 
fault detection system realizes that the fault is more likely in the soft model. In other words, 
soft model is not sufficiently accurate at this instance. To check the performance of the fault 
diagnosis system in the case of a fault in a sensor, Eq. (19) is employed. This equation 
determines the accuracy of fault diagnosis system at each sensor as 

Ti
i

Ti Fi

f

f f
 


 

(19)

where Tif  is the number of correct fault diagnosis in the sensor i  and Fif  is the number of 

false detections when the fault occurs in the sensor i . The result of each sensor’s fault detection 
accuracy is tabulated in Table (5). In model-based fault detection, various causes (most notably 
soft model's weakness and fault occurrence in the model inputs) can lead to significant 
deviations in a number of sensors simultaneously compared to the output of the soft model.  
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Table 5 Fault diagnosis accuracy of system in diagnosing faults correctly in sensors 

 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 
Accuracy 98.2 % 97.1% 97.9% 98% 97.7% 98.6% 

  
 

 
Figure 14 The output of fault diagnosis system when the sensor data exceeds threshold value compared to 
model outputs in more than one sensor. (From 400 to 600 in six sensors, from 800 to 1000 in the first four 

sensors and from 1200 to 1400 in the first two sensors) 
 
 

This is due to the fact that the probability of fault in more than two sensors at the same time is 
very low. In this case, an accurate diagnosis of the cause of deviation (the weakness of the 
model and the probability of fault in the model inputs) is a difficult task. 
   To investigate the operation of the proposed fuzzy fault diagnosis system, at various time 
intervals some artificial faults, for six sensors, four sensors and two sensors have been inserted. 
Thereby, in the samples' interval 200 to 400 of each sensor, in the sample range of 600 to 800 
of the first four sensors and in the range of 1000 to 1200 of the first two sensors, show 
significant deviations compared with the output of the model. 
   In Figure (14), the results of the last two outputs of the fuzzy fault diagnosis system are 
depicted.  It is shown that in the samples 400 to 600, which all 6 sensor residuals have a large 
deviation from the thresholds, the probability of the two states is equal. In the case that four 
sensors have large deviations, i.e., between 800 to 1,000, the fault diagnosis system realizes 
that the probability of faults in the model is more than that of the faults in the inputs. 
Additionally, in the case of large deviations in only two sensors, the probability of fault in 
model is 20 % and in this case the fault diagnosis system for sensors one and two detects the 
probability of simultaneous faults to be 40 %. 
     A comparison between the presented fault diagnosis system and previous studies on the gas 
turbine fault diagnosis such as [50, 26, 3] reveals that in most of these studies, no nonlinear 
robust fault diagnosis method is considered. Robustness is a key factor in the case of industrial 
systems like gas turbines, where nonlinearity and uncertainty can lead to a wrong diagnosis. In 
reference [50], a classical observer-based active robust fault detection method is used in an 
industrial gas turbine prototype model; however, the classical observer-based methods are only 
suitable for linear systems.  
   In the studies where the soft computing methods are used, in all the cases a static nonlinear 
soft model is presented [26, 3]. In this study, however, we take advantage of a nonlinear 
orthonormal basis function (NOBF) model to characterize the essential dynamical behavior.  
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In this model, Laguerre filters are used for linear dynamic parts and hierarchical fuzzy systems 
are used for nonlinear static parts. The adaptive threshold method for robust fault diagnosis has 
been used in gas turbine benchmark [3] and in the present study once again, and its accuracy, 
reliability and robustness are proven. 

 Increase the accuracy of soft sensor due to adding the linear dynamics part. 
 Fault detection system by utilizing all sensors information fusion in the decision level 

provides reliable reports about the status of sensors in the multi-sensor system. 
 This system allows for the recognition of the possible malfunctions of the soft models 

as well as the faults in the models inputs. 
Robustness should be increased because: 

 Adding the Laguerre filters in soft models structure enhances the robustness of the 
fault diagnosis system against noise. 

 Using adaptive threshold approach enhances robustness against the disturbances. 
 

6 Conclusions 
 

In this study, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 
heavy duty gas turbine was presented. For this purpose a Laguerre network-based fuzzy model 
was used. In order to deal with dimensionality problems associated with fuzzy models, the 
structure of the model’s non-linear part was considered as a hierarchical fuzzy system. In 
addition, in order to reduce the computational efforts of training the fuzzy models,  fuzzy c-
means clustering technique  was used to define the structure of fuzzy system and obtain the 
parameters of membership functions. The novelties of the proposed method can be summarized 
as 

 A fair comparison between the responses of the developed models for the sensors and 
the data taken from the real system performances, confirms the accuracy of the models. 

 An adaptive threshold based on neuro-fuzzy system was used to cope with the 
uncertainties of the models and disturbances to improve the accuracy and robustness of 
the fault detection system. 

 For the multi sensor fault diagnosis, a new fuzzy system by high-level information 
fusion was used. The proposed technique considerably improved the reliability of the 
fault diagnosis system. In addition, it allowed detecting the soft model weaknesses and 
faulty input parameters. 

The proposed approach for fault diagnosis utilizes a highly accurate model with adaptive 
threshold based on error model with high reliability. This technique can be used with some 
modifications in various industrial applications. Further improvement may be achieved by 
applying data/sensor fusion techniques for compensating the faulty measurement by sensor.  

In addition, employing more sophisticated fuzzy inference system, such as fuzzy type II 
(interval fuzzy), may improve the robustness and accuracy of fault diagnosis system against 
system uncertainties and remove the needs for adaptive threshold. In the following, it is 
suggested to examine the use of Laguerre network filter in the adaptive threshold method for 
adding the linear dynamic part to model error modeling (MEM) approach. Other issues that 
could be examined include:  using a similar fault diagnosis system for fault diagnosis in multi-
sensor networks and developing the proposed method for fault position detection (to detect 
where faults are happening) in monitoring industrial process (such as rotating machines’ faults) 
and networked systems. 
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Nomenclature 
 

Membership function associated with thj  input variable,i jA  
Number of fuzzy rules c  
Distanced  
Objective function 

mJ  
kth datak  
Laguerre basis filter in z domain

iL  
Laguerre basis filter 

il  
Number of fuzzy system inputsN  
number previous of data used in the current analysisn  
Fault probability 

FaultP  
Vector of cluster centersQ  
ResidualR  
thi  ruleiR  

MEM model output R̂  
Input u  
Input 

iu  
Output y  
Output 

iy  
Soft model output ˆiy  
Vector of data Z  
z Domain parameter z  
Dominant pole parameter of Laguerre filter  
Lower bound of threshold

lower  
Upper bound of threshold

lower  
Membership degree of the thj  data point in the thi  cluster

,i j  
Fault detection accuracy  
Center of Gaussian membership function  
Spread of Gaussian membership function  
 Acronyms 
Adaptive neuro-fuzzy inference systemANFIS 
Compressor pressure ratioCPR 
Fuzzy c-means FCM 
Fuzzy inference system FIS 
Hierarchical fuzzy systemHFS 
Laguerre network-based fuzzy modelLNBFM 
Laguerre network-based hierarchical fuzzy system modelLNBHFS 
Model error modelling MEM 
Nonlinear autoregressive exogenousNARX 
Nonlinear moving average systemNLMA 
Nonlinear orthonormal basis functionNOBF 
Root mean squared errorRMSE 
Takagi, Sugeno and Kang type of fuzzy modelTSK 

 
   


