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Nonlinear Vibration Analysis of
Functionally Graded Plate in
Contact with Fluid: Analytical Study

S. Hashemi® In this paper, the nonlinear vibrations analysis of
M.Sc. Student B fynctionally graded (FG) rectangular plate in contact with
fluid are investigated analytically using first order shear
deformation theory (FSDT). The pressure exerted on the free
surface of the plate by the fluid is calculated using the velocity
potential function and the Bernoulli equation. With the aid of
von Karman nonlinearity strain-displacement relations and
Galerkin procedure the partial differential equations of
A. A. Jafari’ I motion are developed. The nonlinear equation of motion is
Professor @then solved by modified Lindstedt-Poincare method. The
effects of some system parameters such as vibration
amplitude, fluid density, fluid depth ratio, volume fraction
index and aspect ratio on the nonlinear natural frequency of

the plate are discussed in detail.
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1 Introduction

Functionally graded materials (FGM) are a type of composite materials whose mechanical and
thermal properties change from one surface to another according to a continuous function. The
use of FGMs has increased significantly in recent decades. Due to its high thermal resistance
and other properties, FGMs have many engineering applications in various industries such as
defence industries and aerospace industries. FGMs are commonly used in the construction of
equipment such as pressure vessels, turbine blades, heat exchangers, biomaterials like dental
implants and etc. Plates are one of the most common FG structures which have many
applications in the practical engineering. Therefore, due to their high importance, many studies
have been reported on the dynamics of FG plates. Some researchers worked on the vibrations
of FG plates based on classical plate theory (CPT). Zhang and Zhou [1] investigated free
vibration, deflection and buckling analysis of the FG plates using the CPT based on physical
neutral surface. Abrate [2] calculated natural frequencies of FG clamped and simply supported
rectangular thin plates based on the CPT. Since rotatory inertia and shear deformation are
neglected in the CPT, results given by CPT are admissible only for thin plates.
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As a result, some researchers used first order shear deformation theory (FSDT) to take into
account the effects of rotary inertia and shear deformation to analysis of thick plates [3-9].
Hosseini-Hashemi et al. [10] presented analytical method for analysis of free vibrations of FG
rectangular plate on an elastic foundation using FSDT. By using element free kp-Ritz method,
Zhao et al. [11] carried out the free vibrations of FG rectangular plate based on FSDT. They
considered four types of FGM in their investigation. Yang and Shen [12] analyzed the free and
forced vibrations of initially stressed FG plate in thermal environment with different boundary
conditions on the basis of the FSDT. Gupta et al. [13] obtained linear frequencies of rectangular
plate with different boundary constraint by using FSDT. During recent years, many studies have
reported on the nonlinear analysis and large amplitude vibration. Some researchers has provided
articles on the nonlinear vibrations of FG plates. Wang and Zu [14] presented a nonlinear
vibrations analysis of FG plates incorporating the porosity. They used Almert's principle to
derive the governing partial differential equations of plate and eventually solved it by Harmonic
balance method. Yazdi [15] used the homotopy perturbation method to obtain nonlinear to
linear frequency ratio of the FG rectangular plate. By using Fourier series, Woo et al. [16]
investigated the effects of some parameters of the system on the dynamic behavior of FG plate.
Malekzadeh and Monajjemzadeh [17] employed the CPT to analyze the nonlinear response of
FG plates under moving load. Duc and Cong [18] used the Runge-Kutta method to determine
the nonlinear dynamic response of an FG plate resting on elastic foundations that subjected to
thermal, mechanical and damping loads. Fung and Chen [19] established nonlinear equations
for an imperfect FG plate and then they considered effects of volume fraction index, geometric
imperfection and initial stress on nonlinear vibrations. The finite element formulation, based on
higher order shear deformation theory (HSDT), has been developed by Fakhari et al. [20] to
analyze the nonlinear free and forced vibrations of FG plate with surface bonded piezoelectric
layers in thermal environment. Hao et al. [21] dealt with the nonlinear dynamic analysis of FG
cantilever plate under transversal excitation in thermal environment by using asymptotic
perturbation method. They employed Runge-Kutta method and asymptotic perturbation method
to obtain the nonlinear dynamic responses of the plate. An asymptotic perturbation method is
used by Zhang et al. [22] to investigate the nonlinear responses of FG plate subjected to through
the thickness thermal loading combined with external and parametric excitations. Based on
HSDT, Duc et al. [23] presented an analysis of the nonlinear vibration of imperfect FG thick
plates under blast and thermal load resting on the elastic foundations. A Very Large Floating
Structure (VLFS) is a unique concept of sea structures, which may be constructed to create
recreation parks, solar power plant, floating airport and etc. Flat floating structures are like a
large plate which are on the surface of the water. These structures are very flexible in
comparison to other floating structures and analysis of their elastic deformation is much more
important than analysis of their rigid motion. Therefore, the hydrostatic analysis of these types
of structures is one of the key stages in their design. For this purpose, a lot of studies have been
done on the dynamics of plates in contact with fluid. When these structures are exposed to
external fluid, some noise and vibration can be generated. Accordingly, Talebitooti et al. [24]
presented an analytical model on sound transmission of the plate based on considering two-
variable refined plate theory. The effect of hyperbolic shear deformation theory on the sound
transmission loss (STL) of the infinite FG panels was inspected by Talebitooti et al. [25].
Talebitooti et al. [26] also proposed a theoretical model to opti mize STL as well as weight of
the multilayered structure composed of double-walled shell interlayered with porous material
based on Non-dominated sorting Genetic Algorithm. Motaharifar et al. [27] investigated the
vibroacoustic behavior of a plate surrounded by a cavity containing an inclined part through
surface crack with arbitrary position By using finite element method, Ugurlu et al. [28]
investigated the influences of fluid and elastic foundation on the natural frequencies and
associated mode shapes of the simply supported and clamped plate.
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Kerboua et al. [29] studied vibration analysis of rectangular plates coupled with fluid based on
Sanders’ shell theory. A simple and effective procedure for determining the natural frequencies
of rectangular bottom plate structures coupled with fluid is presented by Seung et al. [30].
Khorshidi and Farhadi [31] studied vibration analysis of a laminated composite rectangular
plate in contact with a bounded fluid. They calculated frequencies of the plate coupled with
sloshing fluid mode by using Rayleigh-Ritz method. Ergin and Ugurlu [32] investigated linear
vibration analysis of cantilever plates partially submerged in fluid with the aid of finite element
software. Shahbaztabar and Ranji [33] analyzed the influences of in-plane loads on vibration
behavior of cross-ply laminated composite plates on elastic foundation and vertically in contact
with fluid based on the FSDT. Khorshidi and Bakhsheshy [34] calculated the natural
frequencies of FG rectangular plate in contact with a bounded fluid by use of Rayleigh-Ritz
method. Shafiee et al. [35] presented a semi-analytical method to consider free vibrations of
FG plate resting on Winkler elastic foundation and in contact with a quiescent fluid. Based on
the Mindlin plate theory, Hosseini-Hashemi et al. [36] determined natural frequencies of
rectangular plate, either immersed in fluid or floating on its free surface.

Shahbaztabar and Ranji [37] investigated the free vibration analysis of FG rectangular plates
on two-parameter elastic foundation and vertically coupled with fluid based on the FSDT for
different boundary conditions. Yousefzadeh et al. [38] investigated the effect of hydrostatic
pressure on vibration of FG annular plate coupled with bounded fluid. Chang and Liu [39]
studied the free and forced vibration analysis of composite plates in contact with fluid by
ignoring the effects of rotatory inertia and transverse shear deformation. Wang and Yang [40]
analyzed the nonlinear vibrations of moving FG plates containing porosities and contacting
with liquid based on classical plate theory.

This paper present an analytical solution for nonlinear vibration analysis of functionally
graded plate in contact with fluid based on FSDT. The pressure exerted on the free surface of
the plate by the fluid is calculated using the velocity potential function and the Bernoulli
equation. Within the framework of the developed model, von Karman nonlinearity strain-
displacement relations and FSDT are used to obtain the partial differential equations of motion.
By applying Galerkin method, the nonlinear partial differential equations of motion are
transformed into the time-dependent nonlinear ordinary differential equations. The nonlinear
equation of out of plane motion is then solved analytically by modified Lindstedt-Poincare
method to obtain the nonlinear frequencies of the FG rectangular plate in contact with fluid.
Finally, the effects of some system key parameters such as such as vibration amplitude, fluid
density, fluid depth ratio, volume fraction index and aspect ratio on the nonlinear natural
frequency of the plate in contact with fluid are discussed in detail. To validate the analysis, the
results of this paper are compared with the published data and good agreements are found.

2 Geometry and properties of plate

Fig. (1) depicts an FGM plate composed of alumina and aluminium of length a, width b and
thickness h which is in contact with fluid on one side. The plate simply supported on all four
sides. The origin of the Cartesian coordinate system is located in the mid-plane of the FG plate.
The distance from the mid-plane of the FG plate to the bottom rigid wall of the container is d.
Mass density p(z) and young’s modulus E(z) are assumed to vary continuously along the
thickness of the plate according to power law distribution.

E(z) = (E. — Ep) (222;: h) E,, (1)
2z + h\"
p(z) = (pc — pm) ( ZZ—;; ) + Pm (2)



Nonlinear Vibration Analysis of Functionally Graded ... 113

Ceramic-rich

b

a \ I

Metal-rich

e

Fluid d

Rigid walls

Figure 1 Geometry of an FG rectangular plate in contact with fluid

In which subscripts m and c¢ denote bottom surface and top surface, respectively. Material
properties used in the FG plate are listed in Table (1).

3 Equations of motion

The displacement field (u, v, w) of the FG plate according to the FSDT can be expressed as:

u(x»y,Z» t) :uo(x,y' t) +Z¢x(x'y' t) (3)
v(x,y,2,t) = vo(x,y,t) + 2, (x,y,t) 4)
W(XJY»Z: t) = WO(xry' t) (5)

Where u,, v, and w, are displacements of any point on the middle surface of the FG plate in
the x, y and z directions, respectively. ¢, and ¢,, are rotations about y and x axes, respectively.
Assuming large deformations, the VVon karman nonlinearity strain-displacement relations are

given as follows:

Cduy 1 <6W0)2 P, ©)
fe = 9x T2\ ox “ox
v, 1(0we\*> 3¢,
=— 4 (— —2 7
Eyy 6y+2<6y> * oy ()
auO avo aWO aW0> a¢x a¢y
= —+ — 8
Vay (0y+0x+6x oy Z(6y+6x ®
aw,
Yir =5+ s 9)
adw,
Vyz = — + ¢y (10)
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Table 1 Material properties for FG plate

Properties Ceramic (A4l,03) Metal (Al)

Young’s module 380 Gpa 70 Gpa

Density 3800 22 270254
m3 m3

Based on FSDT, the stress-strain relations are given by:
Oxx Qll Q12 0 Exx
{nyl = [Qu Qz O ]{gyy}
Txy 0 0 Q66 yxy (11)
Tyz [Q44 0 ] {VyZ}
sz Qss5] Wz
Where stiffness coefficients Q;; are defined as:

E(z)

011(2) = Q22(2) = T=v(2)? (12)
E(z)v(z)
N 1

QIZ(Z) 1 —V(Z)Z ( 3)

E(2)
Q44(2) = Qs5(2) = Qes(2) = 20+v@) (14)

The Poisson ratio v in the above relations is constant and equal to 0.3.
On the basis of the FSDT, the motion equations of plate are [41]:

ONyxy ONy,, 0%u, 0%,
= 15
ax oy oo ~+h g (15)

Ny, 0Ny,  d%v,  3%¢,
_ 16
dy TTox e thge (16)

Q Qy azWO
— =] — 17
ax | oy t) — AP = I 5¢2 (17)
OMy, OM,, d%u, 0%,
— 18
ax T dy O =ham thga (18)
oMy, OM,, 0%v,  0%¢,
— = 19
dy TTox Y Thogm thop (19)
N (wy) is

M )—a(N Mo\ aW">+6(N MWo o N aW") 20
Yol = 5x (M gy Yooy /) oay\ Y oy XV ox (20)
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N, M and Q are called the in-plane force resultants, moments resultants and transverse force

resultants, I,, I; and I, are inertia related terms, AP is the total fluid pressure which is calculated

in the next section, and F is the external load which is not considered in free vibrations.
In-plane inertia effects and rotary inertia effects can be ignored due to the thinness of the

plate [42]. As a result, the Egs. (15)-(19) reduce to:

agV;x 4 aév;y —0 (21)

agv;y N 02’% —0 (22)

e g ) + Py, ) = A = L (@3)
c’)g\ﬁx N 616‘4;]@ —0,=0 (24)

e =0y = 0 29)

The force and moment resultants of the FG plate can be written in terms of stress components
across the thickness of the plate:

Noex +% Oxx
Nyy b = f {Uyy} dz (26)
h
ny 2 (Txy
Mxx +% O-xx
Myy = jh {O-yy}zdz (27)
Mxy 2 (Txy
Transverse force resultant and mass moments of inertia are:
0 T
x| _ Z(txz 28
{Qy}_K f R iir® (28)
2
Iy +% 1
{Il} = Jh z ¢p(2)dz (29)
I, 2 z?

Where K is so-called transverse shear correction factor and is equal to 5/6.

4  Fluid formulation

In order to derive the mathematical formulations of fluid, it’s assumed that the fluid is
stationary, incompressible, irrotational and non-viscous. Also, the nonlinear effects of dynamic
pressure at the fluid-plate interface are not considered. The motion of fluid is expressed by
velocity potential function that satisfies the Laplace’s equation throughout the whole fluid
domain. This relation can be expressed in the Cartesian coordinate system as:
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0’0 9%0 0%p

2 —
V0=t 52 T oz

0 (30)

By using Bernoulli’s equation, the fluid pressure at fluid-plate interface is given by:

h h
P P(Z 2) pfat(z 2) (31)
Where Py is fluid density per unit volume. Applied pressure on the upper surface of the plate
IS zero:

h
PU=P(z=+E)=0 (32)
As a result, the total dynamics pressure on the FG plate along the z axis is as follows:
AP =P, - P, (33)
According to the method of separation of variables, velocity potential function takes the form:
B(x,y,z,t) = F(z) Q(x,y,t) (34)

Where F(z) and Q(x,y,t) are two unknown functions to be determined later.

Because of the permanent contact between the peripheral fluid layer and the plate surface, the
out-of-plane velocity component of the fluid on the plate surface should be the same as that of
the plate. The compatibility condition of the plate surface can be expressed by:
0@( B h) _ 0w

0z Z= 2/) ot
By substituting Eqg. (34) into Eq. (35) and then substituting Q(x,y, t) in Eq. (34), velocity
potential function at lower surface of the plate is given by:

(35)

F(2) adw
m%%%”=37;:j55? (36)

dz 2

By inserting Eq. (36) into Eg. (30), second order differential equation is obtained as follows:

d?F(2)
—— —uF(@) =0 S
Where My is a plane wave number that is as follows [25]:
1\ 1\?
_ : 2 (38)
Hr=m (a) * (b)

The general solution of Eq. (37) is written as:

F(z) =4, e 7+ A, e 2 (39)
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A1, A, in Eq. (39) are unknown coefficients to be determined later. By substituting Eg. (39) into
Eqg. (36), velocity potential function is obtained as:

Aje™Z+ A, e ™% Ow

O(x,y,2,t) = (40)

h h
y(Ay €77 — 4y ety O

The boundary constraint at the bottom of the tank, as shown in Fig. (1), represents rigid-wall
condition and was referred to as the null-frequency condition, which is given by:

@(z =—-d)=0 (41)
0z

Substituting Eq. (40) into Eq. (41), velocity potential function is written as:

e+ufz+2ufd + e WZ  ow
Jt

O(x,y,2,t) = (42)

h h
(e — )

Substituting Eq. (42) into Eq. (31), the fluid pressure applying on the lower surface of the FG
plate is found to be:

b _pf(e+2ﬂfd + e+ufh) aZW
L ﬂf(e+2/,tfd _ e+[lfh) atz

(43)

As a result, by inserting Eq. (32) and (43) in Eq. (33), the total dynamics pressure on the FG
plate can be obtained as:

,Df( e+2/.tfd + e+,Lth) aZW aZW
= - P = =M"— 44
A8 = fu =& pp(etrd — e*hrh) ot M ot? (44)

By replacing Eg. (11) into Eq. (26)-(29) and substituting the results into the Eq. (21)-(25),
equations of motion can be written in terms of displacements:

o (e e ) s an (o )

() (i ) @
+Bge (aaz% + Zi?;) =0

G+ ) ey + 1 (34 5 )

(46)

0%¢ 0%uy, 0%v, 0wy 0%w, Ow,y 02w,
By | —2 )+ 4
* 22<6y2>+ 66 <axay+ 0x? + dy 0x? * ox 6x6y>
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0px 0@y
*hes (Eixc')y T ox? ) B

92 d 92 9 a 92 dw, 92
KA55<—;VO+ (’;">+KA44< Yo 4 ¢y>+ Yo 4 ( %o 4 o W")

ay? = 0dy Ox (A1 0x?  0x 0x?

2 2 2 2
0%, d0°vy 0wy 0w, 0“¢,
tBu e T4\ 525, T 5y axay ) T B2\ axay )

d°wy, du, dvy 0Owydw, 6¢x 0,

2 — 4

* 6x6y<A66(6y T ox T ox 0y)+366 R
ow, 0%uy, 0%v, 9w,y 0d%wy 0%p, 0°%¢,
+W<A66 <6x0y+ 0x? + dy 0x? * Bee 6x6y+ 0x?

ow, 0%u, 0%v, Jdwyd2w, Ow,d%w 02 92 47
+ (4 0 o, 9o 0, IWo °) + B, ¢x+ by (47)
ox dy? 0xdy 0y 0xdy 0x 0y? dy? = dxdy

02 duy, 1 /0wy\? P,
oy (A12<6x +§<W> >+Blz ox
ow, 0%uy, 0wy 0%w, 0%, 0%vy 0wy 02w,
* ay ( 12 <6x6y+ dx 0x0y T 51 6x6y+A22 dy? * dy dy?
9%, 2w,
+BZZ <a—yz>> AP = IO a 2

0%uy, 0wy 02w, 029, 0%vy  Owy 02wy
+D
11<6x2 " ox 6x2> 15,z T P12 <6x6y+ 3y 6x6y>

02 0%uy, 0%v, 0wy 0%w, 0w, d%w,
+D12 ﬁ + B66 20 + 0 + 0 0 + 0 0
d0xdy dy 0xdy 0y dxdy Ox 0y?

2 2
br 0%y ow, .
+D66<a 2t 3xay _KAF’S(ax +¢x>_0

0%u, dw,d*w, 02 d0%v, 0J0w,d*w
Bﬂ( 0 IWo O>+D ¢x+322< 0, IWo o)

(48)

dxdy = Ox 0xdy 12 9xdy dy? = 9y dy>?
%¢ 0%uy, 0%v, 0wy 0%w, Jw,y 02w,
D, | —=2|+B
* 22<6y2>+ 66(6 ay " oxz Ty ox2 | ox 6x6y>
2 2
O ¢y (aWO .
<axa Tz ) KA, +4y)=0

(49)

Where coefficients A;;, B;; and D;; are called extensional stiffness, bending-extensional

coupling stiffness and bending stiffness, respectively that are calculated from the following
equation:

ij +—(1
Bl] = f { IQU (Z) dZ l!] = 1F2F4F5l6 (50)
D 2
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The following boundary conditions for simply supported plate according to the FSDT are
considered:

at x=0,a Vg =Wo = Nyx = My =, =0 (51)

at y=0,b Uy =wo =Ny, =M, =, =0 (52)

The boundary conditions in Eqg. (51) and (52) are satisfied by the following admissible
functions:

Up(x, y,t) = i i U (t) cos(ax) sin(By) (53)
n=1m=1

vo(x,y,t) = i i Vinn (t) sin(ax) cos(By) (54)

wo(x, y,t) = i i Winn () sin(ax) sin(By) (55)

¢x(x,y,0) = i i Xnn (£) cos(ax) sin(By) (56)

¢y (x,y,8) = i i Yinn (£) sin(ax) cos(By) (57)

1

3
n
3
I

Where a = % and B = %", and n and m are the half-wave numbers.

Considering only one term in the above series and by replacing Eq. (53)-(57) into Eq. (45)-(49)
and then applying Galerkin procedure the time dependent nonlinear differential equations of
motion can be derived after some mathematical simplifications as:

C11W2 - C12U - C13V - C14X - CISY = O (58)
C21W2 - C22U - C23V - C24,X - C25Y = 0 (59)
(10 + M*) W + C31W3 + C32W + C33X + C34Y - C35UW - C36VW - C37XW
(60)
- C38YW = O
C41W2 - C42W - C43U - C4,4_V - C4,5X - C4,6Y = 0 (61)
C51W2 - Cszw - 653U - C54V - C55X - CS6Y = O (62)

Where C;; are coefficients that are related to the dimensions and plate properties and are
presented in Appendix A. By substituting U,V,X,and Y in terms of W (t) obtained from the
Eg. (58), (59), (61), and (62), into the Eq. (63) results in the nonlinear time-dependent equation
in W(t):
azw
dt?
For the simplification, a set of dimensionless parameters are introduced as:

+a,WHa, W24+a; W3=0 (63)
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t |E, W
=—/— Z - 64
=1 o - w (64)

The non-dimensional form of Eq. (48) is obtained as:
d*w

dr?

17 72 73 —
+aW+BW2+yW3 =0 (65)

Where the coefficients a, # and y are given in Appendix B.

5 Solution method

In the present research, Modified Lindstedt-Poincare method is used to solve Eq. (65). The
assumed initial condition is expressed as:
w(0) = Winax _ A aweo) _ 0 (66)
h dt
Where A is the non-dimensional maximum vibration amplitude. For the necessity of proposed
method, a positive, dimensionless and small parameter must be defined. Therefore Eq. (65)
should be rewritten as follows:

Wr+aW+efW2+eyW3=0 (67)
Where € is bookkeeping parameter that is defined as follows:
h
€=— (68)
a
Linear frequency of FG plate from Eq. (67) is:
a = w? (69)

According to the References [43,44], W (t) and a can be written as a series in €:
V=W W 2, + .-
W=W,+eW; +eW, + (70)
a=w?+ec, +€%c,+ (71)
Where w and ¢y, c,, ...and ¢; (fori =1, ..., o) are unknown coefficients which are calculated
in next section.

Substituting Eqgs. (70) and (71) into Eq. (65), and equating the coefficients at €°, e! and €2 to
zero, yields the following equations:

» _ _ dw,
€l : W + w?W, = 0 Wy(0) = A d—TO(O) =0 (72)
61 : V.T./l + (L)Z]/T/l = _CIWO - ﬁWOZ - )/W()g
_ dw. (73)
W.(0) = 0 ~(0)=0
dt
€2 W, + w?W, = —c,Wy — ¢, Wy — 2BW W, — 3y W, WE
_ dw. (74)
W,(0) =0 dTZ (0) =0

The result of solving Eq. (72) with the corresponding initial condition is as follow:

Wy = A cos(wT) (75)
Substituting Eq. (75) into Eq. (73) gives:
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u _ 3 1
W, + w?W, = (—clA — ZVA3> cos(wt) — E,BAZ cos(2wt) (76)
In order to have a periodic response for W, secular term must be eliminated in Eq. (76). So:
3
= _Z)/AZ (77)

The solution of Eq. (76) is:

1=

_ pA?  yA3 BA? yA3 pA?
(m ~ 3202 cos(wt) + WCOS(ZO)T) + 3707 cos(3wrt) — Py (78)

Similarly, by substituting Egs. (75) and (78) into Eq. (74) and avoiding the secular term,
unknown coefficient c, is obtained:

_ ByA® 3y?A* 5B%A* 3ByA° 3y?A*

— 79
2T U0? T 12802 | bw? 4w? 64w? (79)
Eq. (71), (77), and (79) give the nonlinear natural frequency, that is:
3 3 2 105242  3y2A*
(a + ZyeAz) + \/(a + ZeyAZ) + <ZﬁyA3 - [; — 22 )ez (80)
Wy = >

After solving Eq. (74), W, is obtained to be:

W = c,BA?  B2A3  21ByA*
27\ 20* 3wt 3204
+< 5¢,4%2  c¢;yA®  61B%A3 17ByA*

90t 256wt | 1440t | 320°
2 A5 2 213 4

y-A 1A p=A pyA

256a)4> cos(wt) + <18w2 90 " 6a? cos(2wr) (81)
C1VA3 32A3 ﬁ]/A4 3]/2A5 3
25602 | 1802 T 3202 T 102402 ) €O 39D

4 245
+ <ByA )cos(4wT) + < vA >C05(5wT)

96w? 1024 w?
Eventually, the second order approximation of the solution become as follows:

Wan = WO + € Wl + 62 WZ (82)
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6 Comparison study

In this section, to examine the accuracy and efficiency of the present formulation, the results of
this paper are compared with the existing data available in previously published papers.

As the first comparison study, taking linear parts of motion equations, the linear natural
frequencies of the simply supported FG plate in vacuum can be obtained. Table (2) reported a

comparison of the non-dimensional frequency parameter 8, = wh \/% for FG square plate

obtained in this study with the results of existing literature. The material properties used in the
plate are given in Table (1).

The exact solution given by Hosseini-Hashemi et al. [10] and element free kp-ritz method given
by Zhao et al. [11] are also presented for direct comparison. As can be seen from Table (2), the
present analysis gives highly precision results even for moderately thick plates.

The next study for verifying the results is devoted to the dimensionless frequencies parameters
y = waz\/% of simply supported isotropic rectangular plate in contact with fluid are listed in

Table (3). The numerical results are performed for aspect ratio % = 2, length to thickness ratio

% = 20 and thickness value h = 0.1 m. The exact closed form characteristics equation of this

example is acquired by Hosseini-Hashemi et al. [32] based on the mindlin plate theory are
added in Table (3). As seen in this table, noticeable difference between the results is only in
higher mode shapes. The reason for this difference in higher mode shapes is neglecting of in
plane inertia terms in the equations of motion.

As seen in the previous section, the nonlinear equation of transverse motion for FG
rectangular plate in contact with fluid is solved by the modified Lindstedt-Poincare method. In
order to ensure the accuracy and convergence of this solution approach, the nonlinear to linear
frequency ratio of FG rectangular plate based on FSDT is obtained and then compared with the
results given by Yazdi [15]. From Table (4), there is little difference between these two results.
The reason for this difference is that the shear effects are ignored by Yazdi [15]. In other words,
the results of the present study are more accurate than those by Yazdi [15].

Table 2 Comparison of fundamental frequency parameter g = wh % for

Al/Al,04 square plates

a n
References —
h 0 05 1 4 10
[10]
0.0148 0.0128 0.0115 0.0101 0.0096
[11] 20 0.0146 0.0124 0.0112 0.0097 0.0093
Present

0.0148 0.0126 0.0113 0.0098 0.0094
study
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[10]
0.0577 0.0492 0.0445 0.0383 0.0363
[11] 10 0.0567 0.0482 0.0435 0.0376 0.0359
Present 00581 00494 00445 0386  0.0369
study
[10]
0.2112 0.1806 0.1650 0.1371 0.1304
[11] 5 0.2055 0.1757 0.1587 0.1356 0.1284
Present 02158  0.1847 01672 01435  0.1356
study
Table 3 Comparison of five frequency parameter for isotropic plate immersed in water.
References by Mode (m,n)
a (1,1) (2,1) (3,1) (1,2) (2,2)
Hosseini-Hashemi et al. 41.4293 64.5257 110.369 149.690 171.969
[36] 0
Present study 41.5627 68.8814 113.230 143.87 170.15
Hosseini-Hashemi et al. 38.4638 59.9367 103.140 143.620 163.489
[36] 0.1
Present study 38.5686 64.1521 106.320 134.350 159.680
Hosseini-Hashemi et al. 36.9582 57.1981 101.763 143.556 163.188
[36] 0.3
Present study 37.0557 63.0035 105.590 132.640 158.510
Hosseini-Hashemi et al. 36.8523 56.9347 101.749 143.556 163.188
[36] 0.5
Present study 36.9502 62.9843 105.590 132.630 158.510
Hosseini-Hashemi et al. 36.8455 56.9111 101.748 143.556 163.188
[36] 2.0
Present study 36.9297 62.9832 103.860 132.620 158.510
Hosseini-Hashemi et al. In 48.3006 76.3360 121.632 156.685 182.338
[36] vacuum
Present study 48.5006 76.8203 122.801 158.551 184.794

Table 4 Comparison of nonlinear to linear frequency ratio
for square FGM plate (; = 40)

W n=0.2 n=10

max CPT CPT
h FSDT [15] FSDT [15]
0.25 1.0529 1.0467 1.0473 1.0413
05 1.1962 1.1758 1.1766 1.1563
0.75 1.4005 1.3641 1.3630 1.3266
1.0 1.6428 15911 1.5860 15335
1.25 1.9086 1.8426 1.8323 1.7645
15 21895 21103 20937 20115

1.75 2.4805 2.3890 2.3654 2.2996
2 2.7785 2.6755 2.6442 2.5355
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7 Results and discussion

In this section, the influences of some key plate parameters such as dimensionless vibration
amplitude, aspect ratio, fluid density, depth fluid ratio and volume fraction index on the
nonlinear frequency of FG rectangular plate in contact with fluid are presented in tabular and
graphical forms. The results are reported for plate which is made of a mixture of aluminum (Al)
and alumina (Al,05 ) in which their material properties are listed in Table (1).

Table (5) provided the effects of dimensionless vibration amplitude on the nonlinear frequency

parameter Sy, = wyLh Z—m for FG rectangular plate in vacuum and in contact with fluid for

different volume fraction index. The numerical results are performed for aspect ratio % = 5and

length to thickness ratio % = 20. This table shows that the nonlinear frequency parameter Sy,

increases by increasing the dimensionless vibrations amplitude for different volume fraction
index. It is also seen from this table that when the plate is in contact with fluid, the nonlinear
frequency parameter Sy, of FG plate takes lower values.

Table 5 nonlinear frequency parameter By, = wy h /:—'" for FG rectangular
m

plate in vacuum and in contact with fluid

a _ a _
=20, 7=5)
n
A 0 2 5 10 100
025 03927 02798 02574 02444 02088
05 04965 03610 03243 03035 02617
ii'ate 0.75 06314 04649 04115 03814 03308
— 1 07814 05796 05087 04688  0.4081
15 11023 08230 07167 06570 05740
2 14356 10748 09329 08533  0.7465
025 03407 02359 02150 02033 01728
Plate 4504308 03044 02709 02524 02165
corl1rt]act 075 05478 03920 03438 03172 02738
e 1 06780 04886 04250 03899  0.3378
e 15 09564 06938 05988 05465 04750

2 1.2455 0.9061 0.7794 0.7097 0.6177
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Figure 2 Effect of dimensionless vibration amplitude on nonlinear frequency parameter S, for different
values of aspect ratio for (n = 1)

Figure (2) exhibits effect of dimensionless vibration amplitude % on nonlinear frequency

parameter By, of FG rectangular plate in contact with fluid for different values of aspect ratio
when n = 1. It is seen from this figure, aspect ratios has noticeable effect on the nonlinear
frequency parameter and by increasing the dimensionless vibrations amplitude the nonlinear
frequency parameter increases. However, the slope of increase at% = 5 is higher.

In Figure (3), the variation of the nonlinear frequency parameter By, against the volume
fraction index n for the simply supported FG rectangular plate is shown for different aspect
ratio and @ = 1. As is clear from this figure, that with the increase of the volume fraction

index n, the nonlinear frequency parameter S generally decreased for any aspect ratio %
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Figure 4 Variation of nonlinear frequency parameter By, versus dimensionless vibration amplitude for
different values of n (; = 1)
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Figure 5 Aspect ratio effect on the nonlinear frequency parameter gy, for different values of n (% =1)

Figure (4) shows the behavior of the nonlinear frequency parameter Sy, versus the
dimensionless vibration amplitude % for the simply supported FG rectangular plate in
contact with fluid for different values of volume fraction index n when % = 1. It is obvious
that nonlinear frequency parameter By, increases as the dimensionless vibration amplitude

w; .

—,— increases.

Figure (5) displays the variation of the nonlinear frequency parameter By, against the aspect
ratio % for the simply supported FG rectangular plate in contact with fluid for different values
of volume fraction index n when % = 1. It can apparently be observed that the nonlinear
frequency parameter Sy, increases when the aspect ratio % increases.

Figure (6) contains the plot of the nonlinear frequency parameter S, versus the dimensionless
vibration amplitude % for the simply supported FG rectangular plate in contact with fluid
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with five different fluid when % = 20, % = 2 and n = 10. It is obviously seen from Figure 6
that the enhancement of the dimensionless vibration amplitude @ the nonlinear frequency
parameter By, increases for any fluid density p. On the other hand, increasing the value of
density p results the reduction of nonlinear frequency parameter By

Figure (7) demonstrates the effect of the depth fluid ratio % on nonlinear frequency parameter
By, for three different volume fraction index when %z 20, % = 2 and % =1. It can be
concluded from Figure (7) that by increasing the depth fluid ratio %, the nonlinear frequency

parameter Sy, is increased, while for higher values of the non-dimensional depth of fluid %, the
results convergent to specific value, which can also be reflected in Figure (7).
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Figure 6 the nonlinear frequency parameter S, versus dimensionless vibration amplitude with five different
fluid
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Figure 7 Effect of depth of the fluid on nonlinear frequency parameter 8y, for different values of n
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8 Conclusion

In this study, the nonlinear free vibrations analysis of functionally graded (FG) rectangular plate
which simply supported all edges and is in contact with fluid were investigated analytically.
The material properties were assumed to be graded through the direction of plate thickness
according to power law distribution. The pressure exerted on the free surface of the plate by the
fluid is calculated using the velocity potential function and the Bernoulli equation. With the aid
of von Karman nonlinearity strain-displacement relations, the partial differential equations of
motion were developed based on FSDT. The nonlinear partial differential equations of motion
were transformed into the time-dependent nonlinear ordinary differential equations by applying
Galerkin procedure. The nonlinear equation of out of plane motion was then solved analytically
by modified Lindstedt-Poincare method to determine the nonlinear frequencies of the FG
rectangular plate in contact with fluid. The effects of some system parameters such as vibration
amplitude, fluid density, fluid depth ratio, volume fraction index and aspect ratio on the
nonlinear natural frequency of the plate were discussed in detail. To validate the analysis, the
results of this paper were compared with the published data and good agreements were found.
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Nomenclature

Extensional stiffness
Bending-extensional coupling stiffness
Bending stiffness

Modulus of elasticity of ceramic
Modulus of elasticity of metal

Mass inertia related term

Moment resultant

Force resultant

Presure

Stiffness coefficient
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Q, Rotation about the y axes
Q, Rotation about the x axes
u, Displacements of any point on the middle surface of the plate in the x direction
v,  Displacements of any point on the middle surface of the plate in the y direction
w, Displacements of any point on the middle surface of the plate in the z direction

Greek Symbols

p. Density of ceramic

pm  Density of metal

1) Velocity potential function
€ Normal strain

y Shear strain

T Shear stress

o Normal stress

v Poisson’s ratio

u Plane wave number

€  Book keeping parameter

w; Linear natural frequency
wy; Nonlinear natural frequency
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p
Yy = E_th (C31 - C21C35T12 - C35C41T13 - C35C51T14- - 611636T21 - CZlcSGTZZ
m
- 636641T23 - C36651T24 - 611637T31 - 6216377132 - C37C41T33
- C37C51T34 - C11C38T41 - 621638T4-2 - C38C41T43 - 638651T44
— C11C35T11) /1,

Ti1 = (—C35C45Cs4 + C24C46Cs4 + Co5C44Cs5 — C3Ca6Cs5 — C24Ca4Cs6 + C23C45Cs6) /G
Ti2 = (C15C45Cs4 — C14C46Cs4 — C15C44Cs5 + C13C46Cs5 + C14C44C56 — C13C45C56) /G
Ti3 = (—C15C24Cs4 + C14C35Cs4 + C15C23Cs5 — C13C35Cs5 — C14C33C56 + C13024C56) /G
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T31 = (—C25C44Cs3 + C23C46C53 + Co5C43C54 — C52C46Cs4 — Co3C43C56 + C32044C56) /G
T32 = (C15C44Cs3 — C13C46C53 — C15C43C54 + C12C46C54 + C13C43C56 — C12C44C56) /G
T33 = (—C15C23Cs3 + C13C;5Cs3 + (15022054 — C12C55C54 — C13C53C56 + C12023C56) /G
T34 = (C15C23C43 — C13C35C3 — C15C32C44 + C12C35C,4 + C13C55C46 — C12C53C46) /G
Ty1 = (C24C44Cs3 — C33C45C53 — C34C43C54 + (33045054 + C23C43Cs5 — €23C44Cs5) /G
Tyo = (—C14C44Cs3 + C13C45Cs3 + C14C43Cs4 — C12C45C54 — C13C43C55 + C12C44C55) /G
Ty3 = (C14C33Cs3 — C13C54Cs3 — C14C55C54 + C12C54Cs4 + C13C55C55 — €12C53Cs5) /G
Tys = (—C14C23C3 + C13C24Cy3 + C14C33C4 — C12034Cy — C13C55C45 + C13C53C45) /G

G = (C15€24C44Cs3 — C14C35C44C53 — C15C53C45Cs3 + C13C35C45C53 + C14C53C46Cs3
— (13024 C6Cs53 — (15024 C43C54 + C14025C43C54 + (1505304505,
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