
 
 

  
An Analytical Study for Nonlinear 
Vibration Analysis of Two-directional 
Functionally Graded Rectangular Plate 
In this study, an analytical solution is presented for 
investigating the nonlinear vibration analysis of two-
directional functionally graded rectangular plate for the first 
time. On the basis of first order shear deformation theory 
(FSDT) and Galerkin procedure, the equations of motion are 
developed. The nonlinear equation of motion is then solved 
analytically by modified Lindstedt-Poincare method. The 
volume fraction distribution is assumed to be symmetrical for 
characterizing the in-plane material inhomogeneity. Finally, 
the effects of some system parameters such as non-
dimensional vibration amplitude, volume fraction indexes and 
aspect ratio on the nonlinear to linear frequency ratio are 
discussed in detail. To validate the analysis, the results of this 
paper are compared with the published data and good 
agreements are found. 
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1 Introduction 

 

Functionally graded materials (FGM) are a type of composite materials whose mechanical and 
thermal properties change from one surface to another according to a continuous function. The 
use of FGMs has increased significantly in recent decades. Due to its high thermal resistance 
and other properties, FGMs have many engineering applications in various industries such as 
defense industries and aerospace industries. FGMs are commonly used in the construction of 
equipment such as pressure vessels, turbine blades, heat exchangers, biomaterials like dental 
implants and etc. Plates are one of the most common FG structures which have many 
applications in the practical engineering. Therefore, due to their high importance, many studies 
have been reported on the dynamics of FG plates. Some researchers worked on the vibrations 
of FG plates based on classical plate theory (CPT). Zhang and Zhou [1] investigated free 
vibration, deflection and buckling analysis of the FG plates using the CPT based on physical 
neutral surface. Abrate [2] calculated natural frequencies of FG clamped and simply supported 
rectangular thin plates based on the CPT. Since rotatory inertia and shear deformation are 
neglected in the CPT, results given by CPT are admissible only for thin plates.  
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As a result, some researchers used first order shear deformation theory (FSDT) to take into 
account the effects of rotary inertia and shear deformation to analysis of thick plates [3-9]. 
Hosseini Hashemi et al. [10] presented analytical method for analysis of free vibrations of FG 
rectangular plate on an elastic foundation using FSDT. By using element free kp-ritz method, 
Zhao et al. [11] carried out the free vibrations of FG rectangular plate based on FSDT. They 
considered four types of FGM in their investigation. Yang and Shen [12] analyzed the free and 
forced vibrations of initially stressed FG plate in thermal environment with different boundary 
conditions on the basis of the FSDT. Gupta et al. [13] obtained linear frequencies of rectangular 
plate with different boundary constraint by using FSDT. In addition, some researchers used 
different theories for their analysis. For example, Arefi et al [14]. used two-variable sinusoidal 
shear deformation theory for free vibration analysis of a sandwich nano-plate. Based on 
nonlocal elasticity theory and third order shear deformation theory, Arefi and Rabczuk 
[15]  investigated bending analysis of a piezoelectric doubly curved nano shell.  Arefi et al. [16] 
developed the sinusoidal shear deformation theory and physical neutral surface to analysis of 
functionally graded piezoelectric plate. Based on higher-order sinusoidal shear deformation 
beam theory, Arefi and Zenkour [17] studied bending analysis of  a sandwich microbeam. 
During recent years, many studies have reported on the nonlinear analysis and large amplitude 
vibration. Some researchers has provided articles on the nonlinear vibrations of FG plates. Yan 
Qing Wang And Jean W. Zu [18] presented a nonlinear vibrations analysis of FG plates 
incorporating the porosity. They used Almert's principle to derive the governing partial 
differential equations of plate and eventually solved it by Harmonic balance method. Ali Amin 
Yazdi [19] used the homotopy perturbation method to obtain nonlinear to linear frequency ratio 
of the FG rectangular plate. By using Fourier series, J. Woo et al. [20] investigated the effects 
of some parameters of the system on the dynamic behavior of FG plate. Malekzadeh and 
Monajjemzadeh [21] employed the CPT to analyze the nonlinear response of FG plates under 
moving load. Dinh Duc and Hong Cong [22] used the Runge Kutta method to determine the 
nonlinear dynamic response of an FG plate resting on elastic foundations that subjected to 
thermal, mechanical and damping loads. Fung and Chen [23] established nonlinear equations 
for an imperfect FG plate and then they considered effects of volume fraction index, geometric 
imperfection and initial stress on nonlinear vibrations. The finite element formulation, based on 
HSDT, has been developed by Vahid Fakhari et al. [24] to analyze the nonlinear free and forced 
vibrations of FG plate with surface bonded piezoelectric layers in thermal environment.  
Y.X. Hao et al. [25] dealt with the nonlinear dynamic analysis of FG cantilever plate under 
transversal excitation in thermal environment by using asymptotic perturbation method. They 
employed Runge-Kutta method and asymptotic perturbation method to obtain the nonlinear 
dynamic responses of the plate. An asymptotic perturbation method is used by Zhang et al. [26] 
to investigate the nonlinear responses of FG plate subjected to through the thickness thermal 
loading combined with external and parametric excitations. Based on HSDT, Duc et al. [27] 
presented an analysis of the nonlinear vibration of imperfect FG thick plates under blast and 
thermal load resting on the elastic foundations. For design of some engineering structures such 
as propulsion systems, one-directional-FGMs can not be so effective and components require 
advance materials whose properties are changed in two or multi directional simultaneously.  
Hence, the two-directional functionally graded materials (2D-FGMs) are introduced and many 
investigation have been reported on static and dynamic analysis of 2D-FG structures. Some 
studies have been worked on free and forced vibration analysis of 2D-FG beams [28-33]. Some 
researchers investigated vibration analysis of 2D-FG shells [34,35]. The number of published 
papers focused on the vibration analysis of bi-directional FG plates is still very limited. Lieu et 
al. [36] used NURBS basis functions to model and analyze free vibration and buckling 
responses of in-plane bi-directional functionally graded (IBFG) plates. By using isogeometric 
analysis, Lieu et al. [37] studied bending and free vibration analysis of IBFG plate with variable 
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thickness. By finite annular prism methods,Wu and Yu [38] investigated free vibration analysis 
of bi-directional FG annular plates. Kumar and Lal [39] calculated natural frequencies of free 
axisymmetric vibration of two-directional FG annular plates resting on Winkler foundation 
using differential quadratic method. Shariyat and Alipour [40] employed differential 
transformation method to obtain a semi analytical solution for free vibration of two-directional 
FG circular plates resting on two-parameter elastic foundations. Alipour and Shariyat [41] 
employed a semi analytical solution for free vibration of variable thickness two-directional FG 
circular plates resting on elastic foundations. Sobhani Aragh et al. [42] studied the three-
dimensional free vibration and vibrational displacements characteristics of two-dimensional 
functionally graded fiber-reinforced (2-D FGFR) curved panels with different boundary 
conditions. By using Chebyshev collocation technique and differential quadrature method, 
Kumar [43] analyzed free vibration of two-directional FG annular plates. On the basis of 
classical plates theory and first order shear deformation theory, Lal and Ahlawat [44,45] studied 
buckling and vibrations of two-directional FG circular plates subjected to hydrostatic in-plane 
force. Shariyat and Alipour [46] developed a power series solution for free vibration and 
damping analysis of viscoelastic two-directional FG plates with variable thickness on elastic 
foundations. Tahouneh and Naei [47] analyzed three dimensional dynamic of bi-directional FG 
rectangular plates resting on two-parameter elastic foundations based on the three dimensional 
elasticity theory. Tahouneh and Yas [48] presented semi analytical solution for three 
dimensional vibration analysis of thick multidirectional FG annular sector plates under different 
boundary supports. Yas and Moloudi [49] studied Three-dimensional free vibration analysis of 
multi-directional FG piezoelectric annular plates on elastic foundations via state space based 
differential quadrature method. In many practical engineering problems, FG structures can 
work in more severe circumstances such as aerospace shuttles and crafts, nuclear plants, 
implants, etc. Thus, material property variations in two or three directions are demanded in lieu 
of only one direction as in the conventional FGMs. To meet those real requirements, an 
exhaustive understanding of their responses under various conditions is necessary. In addition, 
from the above mentioned literature, most of the studies on vibration of two-directional FG 
plate are limited to linear case and there is no reported work on nonlinear vibration of two-
directional FG rectangular plate. This article is therefore conducted as the first attempt for 
scientific contributions. In this research, the nonlinear vibrations of two-directional FG 
rectangular plate are investigated for the first time. For this purpose, firstly, the partial 
differential equations of motion are developed based on first order shear deformation theory 
and von Karman nonlinearity strain displacement relations. Afterward, by applying Galerkin 
method, the nonlinear partial differential equations are transformed into nonlinear ordinary 
differential equations. Finally, modified Lindstedt-Poincare method is used for solving 
analytically the nonlinear governing equation of transverse motion. The volume fraction 
distribution is assumed to be symmetrical for characterizing the in-plane material 
inhomogeneity. The effects of some key system parameters such as vibration amplitude, volume 
fraction indexes and aspect ratio on the nonlinear to linear frequency ratio are discussed in 
detail. The results are in good agreement with those obtained in previously published papers.  
 
2 Geometry and properties of plate 

 
Figure (1) depicts an 2D-FG rectangular plate composed of alumina and aluminium of length 
ܽ, width ܾ and thickness ݄ which is simply supported on all four sides. The origin of the 
Cartesian coordinate system is located in the mid-plane of the plate. Material properties ܲ of 
the 2D-FG plate are assumed to vary continuously alter in the ݔ െ  plane according to power ݕ
law distribution. These properties can be expressed as: 
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ܲሺݔ, ሻݕ ൌ ௖ܲ ௖ܸሺݔ, ሻݕ ൅ ௠ܲ ௠ܸሺݔ, ሻ (1)ݕ

 
If the volume fraction of the ceramic part is ܸܿ and the metallic part is ܸ݉, the sum of all the 
volume fractions must be one and is written as: 

௖ܸ ൅ ௠ܸ ൌ 1 (2)

Based on the power law distribution, the volume fraction of a 2D-FGM plate is supposed to 
change continually alter in the ݔ െ  :plane in the following form ݕ

௖ܸሺݔ, ሻݕ ൌ ቀ
ݔ
ܽ
ቁ
௡
ቀ
ݕ
ܾ
ቁ
௠
, ݊,݉ ൒ 0 (3)

Where ݊ and ݉ designate the power indexes in the ݔ െ and ݕ െ axes, respectively. 
Material properties have the forms: 
 

,ݔሺܧ ሻݕ ൌ ௠ܧ ൅ ሺܧ௖ െ ௠ሻܧ ቀ
ݔ
ܽ
ቁ
௡
ቀ
ݕ
ܾ
ቁ
௠

 (4)

,ݔሺߩ ሻݕ ൌ ௠ߩ ൅ ሺߩ௖ െ ௠ሻߩ ቀ
ݔ
ܽ
ቁ
௡
ቀ
ݕ
ܾ
ቁ
௠

 
(5)

Where ܧ and ߩ are young’s modulus and mass density of the 2D-FG plate, respectively. 
Material properties used in the 2D-FG plate are listed in Table (1). 
 

3 Equations of motion 
 

The displacement field ሺݑ, ,ݒ  ሻ of the FG plate according to the FSDT can be expressed asݓ
[50]: 

 
(6)

,ݔሺݑ ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݑ ,ݕ ሻݐ ൅ ,ݔ௫ሺ߶ݖ ,ݕ  ሻݐ
,ݔሺݒ(7) ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݒ ,ݕ ሻݐ ൅ ,ݔ௬ሺ߶ݖ ,ݕ ሻݐ
,ݔሺݓ (8) ,ݕ ,ݖ ሻݐ ൌ ,ݔ଴ሺݓ ,ݕ  ሻݐ

 
Where ݑ଴,  ଴ are displacements of any point on the middle surface of the FG plate inݓ	and	଴ݒ
the ݕ ,ݔ and ݖ directions, respectively. ߶௫	and	߶௬ are rotations about ݕ and ݔ axes, respectively. 
Assuming large deformations, the von Karman nonlinearity strain-displacement relations are 
given as follows: 

௫௫ߝ(9) ൌ
଴ݑ߲
ݔ߲

൅
1
2
൬
଴ݓ߲
ݔ߲

൰
ଶ

൅ ݖ
߲߶௫
ݔ߲

 

௬௬ߝ(10) ൌ
଴ݒ߲
ݕ߲

൅
1
2
൬
଴ݓ߲
ݕ߲

൰
ଶ

൅ ݖ
߲߶௬
ݕ߲

 

௫௬ߛ(11) ൌ ൬
଴ݑ߲
ݕ߲

൅
଴ݒ߲
ݔ߲

൅
଴ݓ߲
ݔ߲

଴ݓ߲
ݕ߲

൰ ൅ ሺݖ
߲߶௫
ݕ߲

߲߶௬
ݔ߲

ሻ 

௫௭ߛ(12) ൌ
଴ݓ߲
ݔ߲

൅ ߶௫ 

௬௭ߛ(13) ൌ
଴ݓ߲
ݕ߲

൅ ߶௬ 

 
The governing equations of the first-order shear deformation theory will be derived using the 
dynamic version of the principle of virtual displacements: 
 

න ሺܷߜ ൅ ܸߜ െ ሻܭߜ ݐ݀ ൌ 0
்

଴
 (14)
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Figure 1 Geometry of a 2D- FG rectangular plate

 
Table 1 Material properties for 2D-FG plate [50] 
Properties Ceramic ሺ݈ܣଶܱଷሻ  Steel ሺ݈ܣሻ 
Young’s module 
Density 

 ܽ݌ܩ 380

3800 
௄௚

௠య 

 ܽ݌ܩ 70

2702 
௄௚

௠య 

 
 
Where the virtual strain energy ܷߜ, virtual work done by applied forces ܸߜ, and the virtual 
kinetic energy ܭߜ are given by: 

ܷߜ ൌ න ቐන ቂߪ௫௫ ቀߝߜ௫௫
ሺ଴ሻ ൅ ௫௫ߝߜݖ

ሺଵሻቁ ൅ ௬௬ߪ ቀߝߜ௬௬
ሺ଴ሻ ൅ ௬௬ߝߜݖ

ሺଵሻቁ ൅ ௫௬ߪ ቀߛߜ௫௬
ሺ଴ሻ ൅ ௫௬ߛߜݖ

ሺଵሻቁ
ା
௛
ଶ

ି
௛
ଶ

	

ஐబ

൅ ௫௭ߛߜ௫௭ߪ
ሺ଴ሻ ൅ ௬௭ߛߜ௬௭ߪ

ሺ଴ሻቃ ቑݖ݀  ݕ݀ݔ݀

(15)

ܸߜ ൌ െන ሾݓߜݍ଴ሿ݀ݕ݀ݔ
ஐబ

 (16)

ܭߜ ൌ න ቐන ,ݔሺߩ ሻݕ
ା
௛
ଶ

ି
௛
ଶ

ൣ൫ݑሶ ଴ ൅ ሶݑߜሶ௫൯൫߶ݖ ଴ ൅ ሶ௫൯߶ߜݖ ൅ ൫ݒሶ଴ ൅ ሶ଴ݒߜሶ௬൯൫߶ݖ ൅ ሶ௬൯߶ߜݖ
	

ஐబ

൅ ሶݓ ଴ݓߜሶ ଴൧݀ݕ݀ݔ݀ݖቑ 

(17)

Substituting for ,ܷߜ	ܸߜ, and ܭߜ from Eq. (15)-(17) into the virtual work statement in Eq. (14) 
and integrating through the thickness of the 2D-FG plate gives: 

න ቊන ቂ ௫ܰ௫ߝߜ௫௫
ሺ଴ሻ ൅ ௫௫ߝߜ௫௫ܯ

ሺଵሻ ൅ ௬ܰ௬ߝߜ௬௬
ሺ଴ሻ ൅ ௬௬ߝߜ௬௬ܯ

ሺଵሻ ൅ ௫ܰ௬ߛߜ௫௬
ሺ଴ሻ ൅ ௫௬ߛߜ௫௬ܯ

ሺଵሻ ൅ ܳ௫ߛߜ௫௭
ሺ଴ሻ

	

ஐబ

்

଴

൅ ܳ௬ߛߜ௬௭
ሺ଴ሻ െ ଴ݓߜݍ െ ሶݑ଴ሺܫ ଴ݑߜሶ ଴ ൅ ሶ଴ݒߜሶ଴ݒ ൅ ሶݓ ଴ݓߜሶ ଴ሻ

െ ሶݑߜଵ൫߶ሶ௫ܫ ଴ ൅ ߶ሶ௬ݒߜሶ଴ ൅ ሶݑሶ௫߶ߜ ଴ ൅ ሶ଴൯ݒߜሶ௬߶ߜ െ ሶ௫߶ߜଶ൫߶ሶ௫ܫ ൅ ߶ሶ௬ߜ߶ሶ௬൯ቃቋ  ݕ݀ݔ݀

(18) 

Where ܰ,ܯ	and	ܳ are called the in-plane force resultants, moments resultants and transverse 
force resultants, ܫ଴,  is the external load which is not ݍ ଶ are inertia related terms andܫ	and	ଵܫ
considered in free vibrations. The force, moment, transverse force resultant and mass moments 
of inertia resultants of the 2D-FG plate can be written in terms of stress components across the 
thickness of the plate: 

	ݕ

ݖ

ݔ

ܾ

ܽ	
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(19) ቐ
௫ܰ௫

௬ܰ௬
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ቑ ൌ න ൝
௫௫ߪ
௬௬ߪ
߬௫௬

ൡ
ା
௛
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ି
௛
ଶ

 ݖ݀
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௛
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ି
௛
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ଵܫ
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1
ݖ
ଶݖ
ൡ

ା
௛
ଶ

ି
௛
ଶ

,ݔሺߩ  ݖሻ݀ݕ

Where  ܭ is so-called the shear stress correction factor and is equal to 5/6. 
Based on FSDT, the stress-strain relations are given by: 

(23) 

ە
ۖ
۔

ۖ
ۓ
௫௫ߪ
௬௬ߪ
߬௬௭
߬௫௭
߬௫௬ۙ

ۖ
ۘ

ۖ
ۗ

ൌ

ۏ
ێ
ێ
ێ
ۍ
ܳଵଵሺݔ, ሻݕ ܳଵଶሺݔ, ሻݕ 0 0 0
ܳଵଶሺݔ, ሻݕ ܳଶଶሺݔ, ሻݕ 0 0 0

0 0 ܳସସሺݔ, ሻݕ 0 0
0 0 0 ܳହହሺݔ, ሻݕ 0
0 0 0 0 ܳ଺଺ሺݔ, ےሻݕ
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ۑ
ۑ
ې

ە
ۖ
۔

ۖ
ۓ
௫௫ߝ
௬௬ߝ
௬௭ߛ
௫௭ߛ
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ۘ
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ۗ

 

Where stiffness coefficients ܳ௜௝ are defined as: 

(24) ܳଵଵሺݔ, ሻݕ ൌ ܳଶଶሺݔ, ሻݕ ൌ
,ݔሺܧ ሻݕ

1 െ ଶߥ
 

(25) ܳଵଶሺݔ, ሻݕ ൌ
,ݔሺܧ ߥሻݕ
1 െ ଶߥ

 

(26) ܳସସሺݔ, ሻݕ ൌ ܳହହሺݔ, ሻݕ ൌ ܳ଺଺ሺݔ, ሻݕ ൌ
,ݔሺܧ ሻݕ

2ሺ1 ൅ ሻߥ
 

The Poisson ratio υ in the above relations is constant and equal to 0.3. 
By relieving ሺݑߜ଴, ,଴ݒߜ  ଴ሻ of Eq. (18) using integration by parts and setting the coefficientsݓߜ
of ሺݑߜ଴, ,଴ݒߜ  ଴ሻ to zero separately (i.e., using the fundamental lemma of calculus ofݓߜ
variations), the General form of equations of motion for 2D-FG rectangular plate in the 
framework of the first-order shear deformation theory will be obtained: 
 

(27) ߲ ௫ܰ௫

ݔ߲
൅
߲ ௫ܰ௬

ݕ߲
ൌ ଴ܫ

߲ଶݑ଴
ଶݐ߲

൅ ଵܫ
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(28) ߲ ௬ܰ௬
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൅
߲ ௫ܰ௬

ݔ߲
ൌ ଴ܫ

߲ଶݒ଴
ଶݐ߲

൅ ଵܫ
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ଶݐ߲

 

(29) 
߲ܳ௫
ݔ߲

൅
߲ܳ௬
ݕ߲

൅ࣨሺݓ଴ሻ ൌ ଴ܫ
߲ଶݓ଴
ଶݐ߲

 

(30) 
௫௫ܯ߲

ݔ߲
൅
௫௬ܯ߲

ݕ߲
െ ܳ௫ ൌ ଵܫ

߲ଶݑ଴
ଶݐ߲

൅ ଶܫ
߲ଶ߶௫
ଶݐ߲

 

(31) 
௬௬ܯ߲

ݕ߲
൅
௫௬ܯ߲

ݔ߲
െ ܳ௬ ൌ ଵܫ

߲ଶݒ଴
ଶݐ߲

൅ ଶܫ
߲ଶ߶௬
ଶݐ߲

 

ࣨሺݓ଴ሻ is: 

(32) ࣨሺݓ଴ሻ ൌ
߲
ݔ߲

൬ ௫ܰ௫
଴ݓ߲
ݔ߲

൅ ௫ܰ௬
଴ݓ߲
ݕ߲

൰ ൅
߲
ݕ߲

൬ ௬ܰ௬
଴ݓ߲
ݕ߲

൅ ௫ܰ௬
଴ݓ߲
ݔ߲

൰ 
 

In-plane inertia effects and rotary inertia effects can be ignored due to the thinness of the plate 
[51]. As a result, the Eqs. (27)-(31) reduce to: 
 

(33)      ߲ ௫ܰ௫

ݔ߲
൅
߲ ௫ܰ௬

ݕ߲
ൌ 0 
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(34) ߲ ௬ܰ௬

ݕ߲
൅
߲ ௫ܰ௬

ݔ߲
ൌ 0 

(35) 
߲ܳ௫
ݔ߲

൅
߲ܳ௬
ݕ߲

൅ࣨሺݓ଴ሻ ൌ ଴ܫ
߲ଶݓ଴
ଶݐ߲

 

(36) 
௫௫ܯ߲

ݔ߲
൅
௫௬ܯ߲

ݕ߲
െ ܳ௫ ൌ 0 

(37) 
௬௬ܯ߲

ݕ߲
൅
௫௬ܯ߲

ݔ߲
െ ܳ௬ ൌ 0 

By replacing Eq. (23) into Eq. (19)-(22) and substituting the results into the Eq. (33)-(37), 
equations of motion can be written in terms of displacements: 

 (38) 

2ܳଵଶሺݔ, ሻݕ
߲ଶ vሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ 2ܳ଺଺ሺݔ, ሻݕ
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2ܳ଺଺ሺݔ, ሻݕ
߲ wሺݔ, ,ݕ ሻݐ
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߲ܳ଺଺ሺݔ, ሻݕ

ݕ߲
߲ uሺݔ, ,ݕ ሻݐ

ݕ߲
൅ 2

߲ܳଵଶሺݔ, ሻݕ

ݔ߲
߲ vሺݔ, ,ݕ ሻݐ

ݕ߲
 

൅2
߲ܳ଺଺ሺݔ, ሻݕ

ݕ߲
߲ vሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 2ܳଵଵሺݔ, ሻݕ

߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݔ߲
߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
 

൅2ܳ଺଺ሺݔ, ሻݕ
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݕ߲
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
൅
߲ܳଵଵሺݔ, ሻݕ

ݔ߲
ቆ
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
ቇ
ଶ

 

൅2
߲ܳ଺଺ሺݔ, ሻݕ

ݕ߲
,ݔሺ	ݓ߲ ,ݕ ሻݐ

ݕ߲
,ݔሺ	ݓ߲ ,ݕ ሻݐ

ݔ߲
൅
߲ܳଵଶሺݔ, ሻݕ

ݔ߲
ሺ
,ݔሺ	ݓ߲ ,ݕ ሻݐ

ݕ߲
ሻଶ ൌ 0 

 (39) 
2ܳଵଶሺݔ, ሻݕ

߲ଶ uሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ 2ܳ଺଺ሺݔ, ሻݕ

߲ଶ uሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ 2ܳଵଶሺݔ, ሻݕ

߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ 

2ܳ଺଺ሺݔ, ሻݕ
߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ 2

߲ܳଵଶሺݔ, ሻݕ

ݕ߲
߲ uሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 2

߲ܳ଺଺ሺݔ, ሻݕ

ݔ߲
߲ uሺݔ, ,ݕ ሻݐ

ݕ߲
 

൅2ܳ଺଺ሺݔ, ሻݕ
߲ଶ vሺݔ, ,ݕ ሻݐ

ଶݔ߲
൅ 2ܳଶଶሺݔ, ሻݕ

߲ଶ vሺݔ, ,ݕ ሻݐ

ଶݕ߲
൅ 2

߲ܳଶଶሺݔ, ሻݕ

ݕ߲
߲ vሺݔ, ,ݕ ሻݐ

ݕ߲
 

൅2
߲ܳ଺଺ሺݔ, ሻݕ

ݔ߲
߲ vሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 2ܳ଺଺ሺݔ, ሻݕ

߲ wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݔ߲
 

൅2ܳଶଶሺݔ, ሻݕ
,ݔሺ	ݓ߲ ,ݕ ሻݐ

ݕ߲
߲ଶݓ	ሺݔ, ,ݕ ሻݐ

ଶݕ߲
൅
߲ܳଵଶሺݔ, ሻݕ

ݕ߲
ሺ
,ݔሺ	ݓ߲ ,ݕ ሻݐ

ݔ߲
ሻଶ 

൅2
߲ܳ଺଺ሺݔ, ሻݕ

ݔ߲
,ݔሺ	ݓ߲ ,ݕ ሻݐ

ݕ߲
,ݔሺݓ߲ ,ݕ ሻݐ

ݔ߲
൅
߲ܳଶଶሺݔ, ሻݕ

ݕ߲
ሺ
,ݔሺݓ߲ ,ݕ ሻݐ

ݕ߲
ሻଶ ൌ 0 

 (40) ߲ܳଵଵሺݔ, ሻݕ

ݔ߲
ቆ
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
ቇ
ଷ

൅
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳଵଶሺݔ, ሻݕ

ݕ߲
ቆ
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
ቇ
ଶ

 

൅2
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳ଺଺ሺݔ, ሻݕ

ݕ߲
ቆ
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
ቇ
ଶ

൅ 3
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݔ߲
ܳଵଵሺݔ, ሻݕ ቆ

߲wሺݔ, ,ݕ ሻݐ

ݔ߲
ቇ
ଶ

 

൅
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݕ߲
ܳଵଶሺݔ, ሻݕ ቆ

߲wሺݔ, ,ݕ ሻݐ

ݔ߲
ቇ
ଶ

൅ 2
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݕ߲
ܳ଺଺ሺݔ, ሻݕ ቆ

߲wሺݔ, ,ݕ ሻݐ

ݔ߲
ቇ
ଶ

 

൅2
߲ uሺݔ, ,ݕ ሻݐ

ݔ߲
߲ܳଵଵሺݔ, ሻݕ

ݔ߲
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ ቆ

߲wሺݔ, ,ݕ ሻݐ

ݕ߲
ቇ
ଶ ߲ܳଵଶሺݔ, ሻݕ

ݔ߲
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 
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2
߲ vሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳଵଶሺݔ, ሻݕ

ݔ߲
߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 2

߲ܳହହሺݔ, ሻݕ

ݔ߲
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 

2ቆ
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
ቇ
ଶ ߲ܳ଺଺ሺݔ, ሻݕ

ݔ߲
߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 2

߲ uሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳ଺଺ሺݔ, ሻݕ

ݕ߲
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 

2
߲ vሺݔ, ,ݕ ሻݐ

ݔ߲
߲ܳ଺଺ሺݔ, ሻݕ

ݕ߲
߲wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 2

߲ଶ uሺݔ, ,ݕ ሻݐ

ଶݔ߲
ܳଵଵሺݔ, ሻݕ

߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 

2
߲ଶ vሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
ܳଵଶሺݔ, ሻݕ

߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 4

߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
ܳଵଶሺݔ, ሻݕ

߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 

2
߲ଶ uሺݔ, ,ݕ ሻݐ

ଶݕ߲
ܳ଺଺ሺݔ, ሻݕ

߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 2

߲ଶ vሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
ܳ଺଺ሺݔ, ሻݕ

߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 

8
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
ܳ଺଺ሺݔ, ሻݕ

߲ wሺݔ, ,ݕ ሻݐ

ݔ߲
൅ 2

߲ uሺݔ, ,ݕ ሻݐ

ݔ߲
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳଵଶሺݔ, ሻݕ

ݕ߲
൅ 

ቆ
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
ቇ
ଷ ߲ܳଶଶሺݔ, ሻݕ

ݕ߲
൅ 2

߲ vሺݔ, ,ݕ ሻݐ

ݕ߲
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳଶଶሺݔ, ሻݕ

ݕ߲
൅ 2

߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳସସሺݔ, ሻݕ

ݕ߲
 

൅2
߲ uሺݔ, ,ݕ ሻݐ

ݕ߲
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳ଺଺ሺݔ, ሻݕ

ݔ߲
൅ 2

߲ vሺݔ, ,ݕ ሻݐ

ݔ߲
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ܳ଺଺ሺݔ, ሻݕ

ݔ߲
 

൅2
߲ uሺݔ, ,ݕ ሻݐ

ݔ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݔ߲
ܳଵଵሺݔ, ሻݕ ൅ ቆ

߲wሺݔ, ,ݕ ሻݐ

ݕ߲
ቇ
ଶ ߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݔ߲
ܳଵଶሺݔ, ሻݕ ൅ 

2
߲ vሺݔ, ,ݕ ሻݐ

ݕ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݔ߲
ܳଵଶሺݔ, ሻݕ ൅ 2

߲ uሺݔ, ,ݕ ሻݐ

ݔ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݕ߲
ܳଵଶሺݔ, ሻݕ ൅ 

2
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ଶ uሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
ܳଵଶሺݔ, ሻݕ ൅ 2

߲ଶ vሺݔ, ,ݕ ሻݐ

ଶݕ߲
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
ܳଶଶሺݔ, ሻݕ ൅ 

3ቆ
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
ቇ
ଶ ߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݕ߲
ܳଶଶሺݔ, ሻݕ ൅ 2

߲ vሺݔ, ,ݕ ሻݐ

ݕ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݕ߲
ܳଶଶሺݔ, ሻݕ ൅ 

2
߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݕ߲
ܳସସሺݔ, ሻݕ ൅ 2

߲߶௒ሺݔ, ,ݕ ሻݐ

ݕ߲
ܳସସሺݔ, ሻݕ ൅ 2

߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݔ߲
ܳହହሺݔ, ሻݕ ൅ 

2
߲߶௑ሺݔ, ,ݕ ሻݐ

ݔ߲
ܳହହሺݔ, ሻݕ ൅ 2

߲ଶ vሺݔ, ,ݕ ሻݐ

ଶݔ߲
߲ wሺݔ, ,ݕ ሻݐ

ݕ߲
ܳ଺଺ሺݔ,  ሻݕ

൅2ቆ
߲wሺݔ, ,ݕ ሻݐ

ݕ߲
ቇ
ଶ ߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݔ߲
ܳ଺଺ሺݔ, ሻݕ ൅ 2

߲wሺݔ, ,ݕ ሻݐ

ݕ߲
߲ଶ uሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
ܳ଺଺ሺݔ, ሻݕ ൅ 

4
߲ uሺݔ, ,ݕ ሻݐ

ݕ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
ܳ଺଺ሺݔ, ሻݕ ൅ 4

߲ vሺݔ, ,ݕ ሻݐ

ݔ߲
߲ଶ wሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
ܳ଺଺ሺݔ, ሻݕ ൅ 

2
߲ܳହହሺݔ, ሻݕ

ݔ߲
߶௑ሺݔ, ,ݕ ሻݐ ൅ 2

߲ܳସସሺݔ, ሻݕ

ݕ߲
߶௒ሺݔ, ,ݕ ሻݐ െ 2

߲ଶ wሺݔ, ,ݕ ሻݐ

ଶݐ߲
,ݔሺߩ ሻݕ ൌ 0 

(41) 
݄ଶܳଵଶሺݔ, ሻݕ

߲ଶ߶௒ሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ ݄ଶܳ଺଺ሺݔ, ሻݕ

߲ଶ߶௒ሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ ݄ଶܳଵଵሺݔ, ሻݕ

߲ଶ߶௑ሺݔ, ,ݕ ሻݐ

ଶݔ߲
 

൅݄ଶܳ଺଺ሺݔ, ሻݕ
߲ଶ߶௑ሺݔ, ,ݕ ሻݐ

ଶݕ߲
൅ ݄ଶ

߲ܳଵଵሺݔ, ሻݕ

ݔ߲
߲߶௑ሺݔ, ,ݕ ሻݐ

ݔ߲
൅ ݄ଶ

߲ܳ଺଺ሺݔ, ሻݕ

ݕ߲
߲߶௑ሺݔ, ,ݕ ሻݐ

ݕ߲
 

൅݄ଶ
߲ܳ଺଺ሺݔ, ሻݕ

ݕ߲
߲߶௒ሺݔ, ,ݕ ሻݐ

ݔ߲
൅ ݄ଶ

߲ܳଵଶሺݔ, ሻݕ
ݔ߲

߲߶௒ሺݔ, ,ݕ ሻݐ
ݕ߲

െ 12ܳହହሺݔ, ሻݕ
,ݔሺ	ݓ߲ ,ݕ ሻݐ

ݔ߲
െ 

12ܳହହሺݔ, ,ݔሻ߶௑ሺݕ ,ݕ ሻݐ ൌ 0 
 (42) 

݄ଶܳଵଶሺݔ, ሻݕ
߲ଶ߶௑ሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ ݄ଶܳ଺଺ሺݔ, ሻݕ

߲ଶ߶௑ሺݔ, ,ݕ ሻݐ

ݕ߲ ݔ߲
൅ ݄ଶܳ଺଺ሺݔ, ሻݕ

߲ଶ߶௒ሺݔ, ,ݕ ሻݐ

ଶݔ߲
 

൅݄ଶ
߲ܳଵଶሺݔ, ሻݕ

ݕ߲
߲߶௑ሺݔ, ,ݕ ሻݐ

ݔ߲
൅ ݄ଶ

߲ܳ଺଺ሺݔ, ሻݕ

ݔ߲
߲߶௑ሺݔ, ,ݕ ሻݐ

ݕ߲
൅ ݄ଶܳଶଶሺݔ, ሻݕ

߲ଶ߶௒ሺݔ, ,ݕ ሻݐ

ଶݕ߲
 

൅݄ଶ
߲ܳ଺଺ሺݔ, ሻݕ

ݔ߲
߲߶௒ሺݔ, ,ݕ ሻݐ

ݔ߲
൅ ݄ଶ

߲ܳଶଶሺݔ, ሻݕ
ݕ߲

߲߶௒ሺݔ, ,ݕ ሻݐ
ݕ߲

െ 12ܳସସሺݔ, ሻݕ
,ݔሺ	ݓ߲ ,ݕ ሻݐ

ݕ߲
 

െ12ܳସସሺݔ, ,ݔሻ߶௒ሺݕ ,ݕ ሻݐ ൌ 0 
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The following boundary conditions for simply supported plate according to the FSDT are 
considered: 

ݐܽ(43) ݔ ൌ 0, ଴ݒ									ܽ ൌ ଴ݓ ൌ ௫ܰ௫ ൌ ௫௫ܯ ൌ ߶௬ ൌ 0
ݐܽ(44) ݕ ൌ 0, ଴ݑ									ܾ ൌ ଴ݓ ൌ ௬ܰ௬ ൌ ௬௬ܯ ൌ ߶௫ ൌ 0

 
The boundary conditions in Eq. (43) and (44) are satisfied by the following admissible functions 
[52]: 

,ݔ଴ሺݑ (45) ,ݕ ሻݐ ൌ ෍෍ܷ௣௤ሺݐሻ cosሺݔߙሻ sinሺݕߚሻ

ஶ

௤ୀଵ

ஶ

௣ୀଵ

 

,ݔ଴ሺݒ (46) ,ݕ ሻݐ ൌ ෍෍ ௣ܸ௤ሺݐሻ sinሺݔߙሻ cosሺݕߚሻ

ஶ

௤ୀଵ

ஶ

௣ୀଵ

 

,ݔ଴ሺݓ (47) ,ݕ ሻݐ ൌ ෍෍ ௣ܹ௤ሺݐሻ sinሺݔߙሻ sinሺݕߚሻ

ஶ

௤ୀଵ

ஶ

௣ୀଵ

 

(48) ߶௫ሺݔ, ,ݕ ሻݐ ൌ ෍෍ܺ௣௤ሺݐሻ cosሺݔߙሻ sinሺݕߚሻ

ஶ

௤ୀଵ

ஶ

௣ୀଵ

 

(49) ߶௬ሺݔ, ,ݕ ሻݐ ൌ ෍෍ ௣ܻ௤ሺݐሻ sinሺݔߙሻ cosሺݕߚሻ

ஶ

௤ୀଵ

ஶ

௣ୀଵ

 

 
Where ߙ ൌ ௤గ

௔
  and 	ߚ ൌ ௣గ

௕
, and ݌ and ݍ are the half-wave numbers. 

For the simplification, a set of dimensionless parameters are introduced as: 

(50) 
ሺݑത, ,ݒ̅ ഥሻݓ ൌ

ሺݑ, ,ݒ ሻݓ
݄

					ሺ̅ݔ, തሻݕ ൌ ቀ
ݔ
ܽ
,
ݕ
ܾ
ቁ ሺݎ, ሻݏ ൌ ቀ

ܽ
ܾ
,
ܽ
݄
ቁ തܧ ൌ

ܧ
௠ܧ

ߩ̅ ൌ
ߩ
௠ߩ

					߬

ൌ
ݐ
݄
ඨ
௠ܧ
௠ߩ

 

Considering only one term in the Eq. (45)-(49) and by replacing they into Eq. (38)-(42) and 
then applying Galerkin method the time dependent nonlinear differential equations of motion 
after applying dimensionless parameters and some mathematical simplifications can be derived 
as: 
 

ଵଵܥ(51) ഥܹ ଶ ൅ ଵଶܥ ഥܷ ൅ ଵଷܥ തܸ ൌ 0
ଶଵܥ(52) ഥܹ ଶ ൅ ଶଶܷܥ ൅ ଶଷܸܥ ൌ 0

ଷଵܥ (53) 	
݀ଶ ഥܹ

݀߬ଶ
൅ ଷଶܥ ഥܹ ൅ ଷଷܥ ഥܷ ഥܹ ൅ ଷସܥ തܸ ഥܹ ൅ ଷହܥ ഥܹ ଷ ൅ ଷ଺ܺܥ ൅ ଷ଻ܻܥ ൌ 0 

ସଵܥ (54) ഥܹ ൅ ସଶܺܥ ൅ ସଷܻܥ ൌ 0 
ହଵܥ (55) ഥܹ ൅ ହଶܺܥ ൅ ହଷܻܥ ൌ 0 

 
Where ܥ௜௝ are non-dimensional coefficients that are related to the dimensions and plate 
properties and are presented in Appendix A. By substituting ܷ, ܸ, ܺ, and	ܻ in terms of ܹሺݐሻ 
obtained from the Eq. (51), (52), (54), and (55), into the Eq. (53) results in the nonlinear time-
dependent equation in ܹሺݐሻ: 

(56) ݀ଶ ഥܹ

݀߬ଶ
൅ ߙ ഥܹ ൅ ߛ ഥܹ ଷ ൌ 0 

 
Where the coefficients ߙ	and	ߛ′ are given in Appendix B. 
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4 Solution method  
 
In the present research, Modified Lindstedt-Poincare method is used to solve Eq. (56). The 
assumed initial condition is expressed as: 

(57) ഥܹ ሺ0ሻ ൌ ௠ܹ௔௫

݄
ൌ ܣ

݀ ഥܹ ሺ0ሻ
݀߬

ൌ 0 
Where  ܣ is the non-dimensional maximum vibration amplitude. For the necessity of proposed 
method, a positive, dimensionless and small parameter must be defined. Therefore Eq. (56) 
should be rewritten as follows: 

(58) ݀ଶ ഥܹ

݀߬ଶ
൅ ߙ ഥܹ ൅ ߳

ܽ ߛ
݄

ഥܹ ଷ ൌ 0 
Where  ߳ is bookkeeping parameter and is defined as follows: 

(59) ߳ ൌ
݄
ܽ

 
Linear frequency of FG plate from Eq. (58) is: 

ߙ(60) ൌ ߱௟
ଶ

According to the References [53, 54], ഥܹ ሺ߬ሻ  and ߙ can be written as a series in ߳: 
 

(61)ഥܹ ൌ ഥܹ଴ ൅ ߳ ഥܹଵ ൅ ߳ଶ ഥܹଶ ൅ ⋯
ߙ(62) ൌ ߱ே௅

ଶ ൅ ߳ ܿଵ ൅ ߳ଶܿଶ ൅ ⋯
 
Where nonlinear frequency ߱ே௅ and ܿଵ, ܿଶ, … ܽ݊݀	ܿ௜		ሺfor	݅ ൌ 1,… ,∞ሻ are unknown 
coefficients which are calculated in next section. 
By Substituting Eq. (61) and (62) into Eq. (58), and then equating coefficients ߳଴, ߳ଵ		ܽ݊݀	߳ଶ 
to zero, yields the following equations: 

(63) ߳଴ ∶ 			 ഥܹሷ ଴ ൅ ߱ଶ ഥܹ଴ ൌ 0																	 ഥܹ଴ሺ0ሻ ൌ ܣ
݀ ഥܹ଴
݀߬

ሺ0ሻ ൌ 0 

(64) ߳ଵ ∶ 			 ഥܹሷ ଵ ൅ ߱ଶ ഥܹଵ ൌ െܿଵ ഥܹ଴ െ ߚ ഥܹ଴
ଶ െ ߛ ഥܹ଴

ଷ ഥܹଵሺ0ሻ ൌ 0
݀ ഥܹଵ
݀߬

ሺ0ሻ ൌ 0 

(65) ߳ଶ ∶ 			 ഥܹሷ ଶ ൅ ߱ଶ ഥܹଶ ൌ െܿଶ ഥܹ଴ െ ܿଵ ഥܹଵ െ ߚ2 ഥܹ଴ ഥܹଵ െ ߛ3 ഥܹଵ ഥܹ଴
ଶ ഥܹଶሺ0ሻ ൌ 0								

݀ ഥܹଶ
݀߬

ሺ0ሻ

ൌ 0 
 
The result of solving Eq. (63) with the corresponding initial condition is as follow: 

(66)ഥܹ଴ ൌ ܣ ሺ߱߬ሻݏ݋ܿ
Substituting Eq. (66) into Eq. (64) gives: 

(67) ഥܹሷ ଵ ൅ ߱ଶ ഥܹଵ ൌ ൬െܿଵܣ െ
3
4
ଷ൰ܣߛ ሺ߱߬ሻݏ݋ܿ െ

1
2
ଶܣߚ  ሺ2߱߬ሻݏ݋ܿ

 
In order to have a periodic response for  ഥܹଵ, secular term must eliminate in Eq. (67). So: 

(68) ܿଵ ൌ െ
3
4
 ଶܣߛ

The solution of Eq. (67) is: 
 

(69) ഥܹଵ ൌ ቆ
ଶܣߚ

3߱ଶ െ
ଷܣߛ

32߱ଶቇ ሺ߱߬ሻݏ݋ܿ ൅
ଶܣߚ

6߱ଶ ሺ2߱߬ሻݏ݋ܿ ൅
ଷܣߛ

32߱ଶ ሺ3߱߬ሻݏ݋ܿ െ
ଶܣߚ

2߱ଶ 

 
Similarly, by substituting Eqs. (66) and (69) into Eq. (65) and avoiding the secular term, 
unknown coefficient ܿଶ is obtained: 

(70) ܿଶ ൌ
ଷܣߛߚ

4߱ଶ െ
ସܣଶߛ3

128߱ଶ ൅
ଶܣଶߚ5

6߱ଶ െ
ଷܣߛߚ3

4߱ଶ ൅
ସܣଶߛ3

64߱ଶ  
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Eq. (62), (68), and (70) give the nonlinear natural frequency, that is: 
 

(71) 
߱ே௅ ൌ

ඪቀߙ ൅
3
4 ܣ߳ߛ

ଶቁ ൅ ඨቀߙ ൅
3
4 ܣߛ߳

ଶቁ
ଶ
൅ ൬2ܣߛߚଷ െ

ଶܣଶߚ10
3 െ

ସܣଶߛ3
32 ൰ ߳ଶ

2
 

 
After solving Eq. (65), ഥܹଶ is obtained to be: 
 
 

(72) 

ഥܹଶ ൌ ቆ
ܿଵܣߚଶ

2߱ସ െ
ଷܣଶߚ

3߱ସ ൅
ସܣߛߚ21

32߱ସ ቇ

൅ ቆെ
5ܿଵܣߚଶ

9߱ସ െ
ܿଵܣߛଷ

256߱ସ ൅
ଷܣଶߚ61

144߱ସ െ
ସܣߛߚ17

32߱ସ െ
ହܣଶߛ

256߱ସቇ ሺ߱߬ሻݏ݋ܿ

൅ ቆ
ܿଵܣߚଶ

18߱ଶ െ
ଷܣଶߚ

9߱ଶ െ
ସܣߛߚ

6߱ଶ ቇ ሺ2߱߬ሻݏ݋ܿ

൅ ቆ
ܿଵܣߛଷ

256߱ଶ ൅
ଷܣଶߚ

48߱ଶ ൅
ସܣߛߚ

32߱ଶ ൅
ହܣଶߛ3

1024߱ଶቇ ሺ3߱߬ሻݏ݋ܿ ൅ ቆ
ସܣߛߚ

96߱ଶቇ ሺ4߱߬ሻݏ݋ܿ

൅ ቆ
ହܣଶߛ

1024߱ଶቇ  ሺ5߱߬ሻݏ݋ܿ

 
 
Eventually, the second order approximation of the solution become as follows: 
 

(73)ഥܹଶ௡ௗ ൌ ഥܹ଴ ൅ ߳ ഥܹଵ ൅ ߳ଶ ഥܹଶ

 
5 Comparison study 
 
In this section, to examine the accuracy and efficiency of the present formulation, the results of 
this paper are compared with the existing data available in previously published papers. 

As the first comparison study, frequency parameters ߚ ൌ ݄߱ට
ఘ೎
ா೎

 of simply supported FG 

square plates are given in Table (2), for different values of length to thickness ratio and power 
law exponent. Included in this table are also the results of the exact solutions of FG rectangular 
plates based on the first and third-order shear deformation plate theory reported by Hosseini 
Hashemi et al. [10], element-free kp-Ritz method obtained by Zhao et al [11]. It is clearly 
evident that the excellent agreements are found between the results.  
 
As seen in the previous section, the nonlinear equation of transverse motion for 2D-FG 
rectangular plate is solved analytically by the modified Lindstedt-Poincare method. In order to 
ensure the accuracy and convergence of this solution approach, the nonlinear to linear frequency 
ratio of FG rectangular plate based on first order shear deformation theory is obtained and then 
compared with the results given by Yazdi [15]. From Table (3), there is little difference between 
present results and Yazdi [15]. The reason for this difference is that the shear effects are ignored 
in the reference [15]. In other words, the results of the present study are more accurate than the 
reference [15]. 
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Table 2  Comparison of fundamental frequency parameter             

ࢼ ൌ ටࢎ࣓
ࢉ࣋
ࢉࡱ

 for ࢒࡭/࢒࡭૛ࡻ૜ square plates 

ܽ࢔
݄

 References  
10  4  1  0.5  0  

0.0096  
0.0093  
0.0094  

0.0101  
0.0097  
0.0098  

0.0115  
0.0112  
0.0113  

0.0128  
0.0124  
0.0126  

0.0148  
0.0146  
0.0148  

20  

[10]  
[11]  

Present 
study  

0.0363  
0.0359  
0.0369  

0.0383  
0.0376  
0.386  

0.0445  
0.0435  
0.0445  

0.0492  
0.0482  
0.0494  

0.0577  
0.0567  
0.0581  

10  

[10]  
[11]  

Present 
study  

0.1304  
0.1284  
0.1356  

0.1371  
0.1356  
0.1435  

0.1650  
0.1587  
0.1672  

0.1806  
0.1757  
0.1847  

0.2112  
0.2055  
0.2158  

5  

[10]  
[11]  

Present 
study  

 
 

6 Results and discussion 
 
In this section, the influences of some key plate parameters such as dimensionless vibration 

amplitude ሺܣሻ, aspect ratio ቀ௔
௕
ቁ, width FG index ሺ݉ሻ and length FG index (݊) on the nonlinear 

frequency ratio ቀఠಿಽ

ఠಽ
ቁ of 2D-FG rectangular plate are presented in tabular and graphical forms. 

The results are reported for plate which is made of a mixture of aluminum (݈ܣ) and alumina 
 in which their material properties are listed in Table (1). It should be note that the (ଶܱଷ݈ܣ)
nonlinear frequency ratio is described as the ratio of nonlinear natural frequency to linear 
natural frequency in all cases in this section. 
 
Table (4) provided the effects of dimensionless vibration amplitude ሺܣሻ on the nonlinear 

frequency ratio ቀఠಿಽ

ఠಽ
ቁ of 2D-FG rectangular plate for different volume fraction indexes ݉ and 

݊. The numerical results are performed for aspect ratio 
௔

௕
ൌ 1 and length to thickness ratio 

௔

௛
ൌ

20.  
This table shows that higher dimensionless vibration amplitude results in a larger nonlinear 
frequency ratio for different volume fraction indexes. In other word, the discrepancy between 
nonlinear and linear frequency is deeply depend on the vibration amplitude. 
Table (5) shows the effects of length-thickness ratio 

௔

௛
 on nonlinear frequency ratio of 2D-FG 

square plate for different values of volume fraction indexes with  ܣ ൌ 1. It can be seen from 
Table 5, the nonlinear frequencies ratio of the of 2D-FG square plate will enlarge with the 
decreasing of length-thickness ratio. This is due to as 

௔

௛
 increases, the plate becomes more 

flexible and hence its effective stiffness reduces. It is implied that the 2D FG plate with a higher 
length-thickness ratio has a lower nonlinear frequency. Figure (2) shows the variation of the 
nonlinear frequency versus width FG index ሺ݉ሻ for different values of length FG index (݊) 
when	ܣ ൌ 1	and 

௔

௛
ൌ 20. As seen from the figure, nonlinear frequency decreases on increasing 

width FG index. 
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Table 3 Comparison of nonlinear to linear frequency ratio 
for square FG plate 

ሺ
ࢇ
ࢎ
ൌ ૝૙ሻ 

࢔ ൌ ૚૙݊ ൌ 0.2
												 ௠ܹ௔௫

݄
 CPT 

[15] 
FSDT 

CPT 
[15] 

FSDT 

1.0413 
1.1563 
1.3266 
1.5335 
1.7645 
2.0115 
2.2996 
2.5355 

1.0473 
1.1766 
1.3630 
1.5860 
1.8323 
2.0937 
2.3654 
2.6442 

1.0467 
1.1758 
1.3641 
1.5911 
1.8426 
2.1103 
2.3890 
2.6755 

1.0529 
1.1962 
1.4005 
1.6428 
1.9086 
2.1895 
2.4805 
2.7785 

0.25 
0.5 
0.75 
1.0 
1.25 
1.5 
1.75 
2 

 
 
 
Table 4 Nonlinear frequency ratio for 2D-FG square plate ሺ

ࢇ

ࢎ
ൌ ૛૙ሻ 

 ࡭
 ݉ 
݊ 0 1 2 5 10 

0.25 

0 1.0597 1.0597 1.0666 1.0812 1.0905 
1 1.0597 1.0597 1.0646 1.0725 1.0766 
2 1.0629 1.0619 1.0632 1.0656 1.0677 
5 1.0701 1.0656 1.0620 1.0590 1.0594 

10 1.0732 1.0669 1.0622 1.0583 1.0582 

0.75 

0 1.4449 1.4449 1.4888 1.5784 1.6333 
1 1.4449 1.4449 1.4757 1.5254 1.5504 
2 1.4654 1.4590 1.4672 1.4823 1.4953 
5 1.5108 1.4826 1.4595 1.4401 1.4430 

10 1.5299 1.4903 1.4609 1.4354 1.4347 

1.25 

0 1.9976 1.9976 2.0846 2.2592 2.3646 
1 1.9976 1.9976 2.0587 2.1564 2.2051 
2 2.0383 2.0257 2.0418 2.0718 2.0974 
5 2.1277 2.0723 2.0267 1.9881 1.9938 

10 2.1651 2.0875 2.0293 1.9786 1.9772 

1.75 

0 2.6139 2.6139 2.7436 3.0020 3.1569 
1 2.6139 2.6139 2.7051 2.8501 2.9222 
2 2.6748 2.6560 2.6800 2.7247 2.7627 
5 2.8077 2.7254 2.6575 2.5998 2.6083 

10 2.8631 2.7480 2.6614 2.5856 2.5835 

2.25 

0 3.2586 3.2586 3.4302 3.7708 3.9744 
1 3.2586 3.2586 3.3792 3.5708 3.6657 
2 3.3391 3.3143 3.3461 3.4052 3.4553 
5 3.5148 3.4061 3.3162 3.2398 3.2511 

10 3.5879 3.4360 3.3214 3.2210 3.2181 
 
 
Figure (3) shows the variation of the nonlinear frequency versus length FG index (݊) for 
different values of width FG index ሺ݉ሻ when	ܣ ൌ 1	and  

௔

௛
ൌ 20. Results show that increasing 

the length FG index results in nonlinear frequency decreases. It follows from figures (2) and 
(3) that the nonlinear frequencies of the 2D-FG rectangular plates are strongly influenced by 
volume fraction indexes. In fact, the higher materials indexes mean the less volume fraction of 
ceramic phase in the 2D-FG plate, which induces more reduction in the total stiffness of the 
plate. Through the fact that a vibration frequency is directly proportional to the plate stiffness, 
e.g. Young’s modulus, whilst it is inversely proportional to the plate mass one can be inferred 
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that by increasing volume fraction indexes, the nonlinear frequency decreases. Also From these 
figures it’s conclude that smaller volume fraction indexes play a significant role in the nonlinear 
frequencies. Figures (4) and (5) are a backbone curve that exhibits effect of vibration amplitude 
on nonlinear frequency ratio of 2D-FG rectangular plate for different values of volume fraction 
indexes ݊	and	݉ when	 	௔

௛
ൌ 20. As is clear from this figures, volume fraction indexes have 

noticeable effect on the nonlinear frequency ratio. By increasing the volume fraction indexes, 
backbone curves go away from vertical axis. In other word, by increasing volume fraction 
indexes, the degree of hardening nonlinearity behavior decreases. Moreover, it should be note 
that all response curves show initial softening type behavior, turning to hardening type for larger 
vibration amplitudes although the hardening degree is different. 
Figure (6) describes the variation of the nonlinear frequency ratio with the aspect ratio for 
different values of length FG index (݊) while total area of plate is constant when  ܣ ൌ 1, 

௔

௛
ൌ

20	and	݉ ൌ 0. It is observed that for different ݊ fast decreasing in nonlinear frequency ratio is 
obtained with an increase in aspect ratio for 

௔

௕
൏ 	1.25, while for 1.25	 ൏ ௔

௕
, nonlinear frequency 

ratio is increased by increasing aspect ratio. Figure (7) depicts the variation of the nonlinear 
frequency ratio versus the aspect ratio for different values of width FG index ሺ݉ሻ	while total 
area of plate is constant when	ܣ ൌ 1, ௔

௛
ൌ 20	and	݊ ൌ 0. It is observed that for different ݉ 

decreasing in nonlinear frequency ratio is obtained with an increase in aspect ratio for 
௔

௕
൏ 	0.8, 

while for 0.8	 ൏ ௔

௕
, nonlinear frequency ratio is increased by increasing aspect ratio. 

 
Table 5 Nonlinear frequency ratio for 2D-FG square plate ሺ࡭ ൌ ૚ሻ 
 

ࢇ
ࢎ

 
 ݉ 
݊ 0 1 2 5 10 

5 

0 1.8036 1.8036 1.8743 2.0203 2.1089 
1 1.8036 1.8036 1.8531 1.9339 1.9746 
2 1.8358 1.8257 1.8391 1.8653 1.8870 
5 1.9103 1.8637 1.8276 1.7982 1.8031 

10 1.9416 1.8764 1.8301 1.7904 1.7891 

10 

0 1.7286 1.7286 1.7951 1.9301 2.0121 
1 1.7286 1.7286 1.7752 1.8504 1.8881 
2 1.7595 1.7499 1.7623 1.7856 1.8054 
5 1.8284 1.7856 1.7509 1.7218 1.7263 

10 1.8573 1.7973 1.7530 1.7146 1.7135 

20 

0 1.7093 1.7093 1.7747 1.9069 1.9871 
1 1.7093 1.7093 1.7552 1.8289 1.8658 
2 1.7399 1.7305 1.7426 1.7651 1.7844 
5 1.8073 1.7655 1.7312 1.7022 1.7065 

10 1.8356 1.7770 1.7332 1.6951 1.6941 

50 

0 1.7039 1.7039 1.7690 1.9003 1.9801 
1 1.7039 1.7039 1.7496 1.8229 1.8595 
2 1.7344 1.7250 1.7370 1.7594 1.7785 
5 1.8013 1.7598 1.7256 1.6967 1.7010 

10 1.8294 1.7712 1.7276 1.6896 1.6886 

100 

0 1.7031 1.7031 1.7682 1.8993 1.9790 
1 1.7031 1.7031 1.7488 1.8220 1.8586 
2 1.7336 1.7242 1.7362 1.7585 1.7776 
5 1.8005 1.7590 1.7248 1.6959 1.7002 

10 1.8285 1.7704 1.7268 1.6888 1.6887 
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7 Conclusion 
 
In this paper, the nonlinear free vibration analysis of 2D-FG rectangular plate are studied for 
the first time. For this purpose, the nonlinear partial differential motion equations are first 
developed based on FSDT and von Karman nonlinearity strain displacement relations. Then, 
nonlinear ordinary differential equations are obtained by applying Galerkin method. MLP 
method is used to obtain the analytical solution for the nonlinear vibrations of 2D-FG plate. 
The results are in good agreement with those obtained in previously published paper and 
numerical method. Finally, the effects of some key system parameters such as vibration 
amplitude, volume fraction indexes and aspect ratio on the nonlinear frequency are investigated.  
 

Figure 2 Variation of nonlinear frequency 
versus width FG index ሺ݉ሻ for different values 

of n 

Figure 3 Variation of nonlinear frequency 
versus length FG index (݊) for different values 

of m 

Figure 4 Effect of vibration amplitude on 
nonlinear frequency ratio for different values of 

volume fraction index n (m=0) 

Figure 5 Effect of vibration amplitude on 
nonlinear frequency ratio for different values of 

volume fraction index m (n=0) 
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In summary, the results of this research demonstrated that:  
1. By increasing vibrations amplitude the nonlinear frequency increases, as well as 
the discrepancy between nonlinear and linear frequency is deeply depend on the 
vibration amplitude. 
2. By increasing the gradient indexes results the reduction of nonlinear frequency. 
3. Degree of hardening nonlinearity behavior of the 2D-FG plate is highly depend 
on the length and width FG indexes. 
4. Aspect ratio have significant effects on the nonlinear frequency. 
5. Modified Lindstedt-Poincare method is a powerful and easy tool for solving the 
strongly nonlinear equation. The results from analytical and numerical methods are in 
excellent agreements. 
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Nomenclature 

	Non-dimensional maximum vibration amplitude       ܣ
 ௖      Modulus of elasticity of ceramicܧ
 ௠     Modulus of elasticity of metalܧ
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	Mass inertia related term        ܫ
	Moment resultant      ܯ
ܰ       Force resultant 
P        Material properties 
ܳ       Stiffness coefficient 
 Half wave number (y-direction)        ݌
	Half wave number (x-direction)        ݍ
∅௫     Rotation about the ݕ axes 
∅௬     Rotation about the ݔ axes 
U       Virtual strain energy 
V       Virtual work done by applied forces 
K       Virtual kinetic energy 
 direction ݔ ଴      Displacements of any point on the middle surface of the plate in theݑ
 direction ݕ ଴      Displacements of any point on the middle surface of the plate in theݒ
 direction ݖ ଴     Displacements of any point on the middle surface of the plate in theݓ
 
Greek Symbols 
 
 ௖      Density of ceramicߩ
 ௠     Density of metalߩ
 Normal strain        ߝ
 Shear strain        ߛ
߬        Shear stress 
 Normal stress       ߪ
  Poisson’s ratio       ߥ
߳       Book keeping parameter 
߱௅    Linear natural frequency 
߱ே௅  Nonlinear natural frequency 
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ሺെܥଷ଻ܥସଶܥହଵ ൅ ହଵܥସଷܥଷ଺ܥ ൅ ହଶܥସଵܥଷ଻ܥ െ ହଶܥସଷܥଷଶܥ െ ହଷܥସଵܥଷ଺ܥ ൅ ହଷሻܥସଶܥଷଶܥ

ହଶܥସଷܥଷଵሺെܥ ൅ ହଷሻܥସଶܥ
 

ߛ ൌ
ሺܥଵଷܥଶଵܥଷଷ ൅ ଷଷܥଶଷܥଵଵܥ ൅ ଷସܥଶଵܥଵଶܥ െ ଷସܥଶଶܥଵଵܥ ൅ ଷହܥଶଶܥଵଷܥ െ ଷହሻܥଶଷܥଵଶܥ

ሺܥଵଷܥଶଶ െ ଷଵܥଶଷሻܥଵଶܥ
 

 

  
  
  
  
  


