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An Analytical Study for Nonlinear
Vibration Analysis of Two-directional

Functionally Graded Rectangular Plate
In this study, an analytical solution is presented for
investigating the nonlinear vibration analysis of two-
directional functionally graded rectangular plate for the first
time. On the basis of first order shear deformation theory
(FSDT) and Galerkin procedure, the equations of motion are
developed. The nonlinear equation of motion is then solved
analytically by modified Lindstedt-Poincare method. The
volume fraction distribution is assumed to be symmetrical for
4 characterizing the in-plane material inhomogeneity. Finally,
AA. Jafari'Bine effects of some system parameters such as non-
Professor @ dimensional vibration amplitude, volume fraction indexes and
aspect ratio on the nonlinear to linear frequency ratio are
discussed in detail. To validate the analysis, the results of this
paper are compared with the published data and good
agreements are found.
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1 Introduction

Functionally graded materials (FGM) are a type of composite materials whose mechanical and
thermal properties change from one surface to another according to a continuous function. The
use of FGMs has increased significantly in recent decades. Due to its high thermal resistance
and other properties, FGMs have many engineering applications in various industries such as
defense industries and aerospace industries. FGMs are commonly used in the construction of
equipment such as pressure vessels, turbine blades, heat exchangers, biomaterials like dental
implants and etc. Plates are one of the most common FG structures which have many
applications in the practical engineering. Therefore, due to their high importance, many studies
have been reported on the dynamics of FG plates. Some researchers worked on the vibrations
of FG plates based on classical plate theory (CPT). Zhang and Zhou [1] investigated free
vibration, deflection and buckling analysis of the FG plates using the CPT based on physical
neutral surface. Abrate [2] calculated natural frequencies of FG clamped and simply supported
rectangular thin plates based on the CPT. Since rotatory inertia and shear deformation are
neglected in the CPT, results given by CPT are admissible only for thin plates.
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As a result, some researchers used first order shear deformation theory (FSDT) to take into
account the effects of rotary inertia and shear deformation to analysis of thick plates [3-9].
Hosseini Hashemi et al. [10] presented analytical method for analysis of free vibrations of FG
rectangular plate on an elastic foundation using FSDT. By using element free kp-ritz method,
Zhao et al. [11] carried out the free vibrations of FG rectangular plate based on FSDT. They
considered four types of FGM in their investigation. Yang and Shen [12] analyzed the free and
forced vibrations of initially stressed FG plate in thermal environment with different boundary
conditions on the basis of the FSDT. Gupta et al. [13] obtained linear frequencies of rectangular
plate with different boundary constraint by using FSDT. In addition, some researchers used
different theories for their analysis. For example, Arefi et al [14]. used two-variable sinusoidal
shear deformation theory for free vibration analysis of a sandwich nano-plate. Based on
nonlocal elasticity theory and third order shear deformation theory, Arefi and Rabczuk
[15] investigated bending analysis of a piezoelectric doubly curved nano shell. Arefietal. [16]
developed the sinusoidal shear deformation theory and physical neutral surface to analysis of
functionally graded piezoelectric plate. Based on higher-order sinusoidal shear deformation
beam theory, Arefi and Zenkour [17] studied bending analysis of a sandwich microbeam.
During recent years, many studies have reported on the nonlinear analysis and large amplitude
vibration. Some researchers has provided articles on the nonlinear vibrations of FG plates. Yan
Qing Wang And Jean W. Zu [18] presented a nonlinear vibrations analysis of FG plates
incorporating the porosity. They used Almert's principle to derive the governing partial
differential equations of plate and eventually solved it by Harmonic balance method. Ali Amin
Yazdi [19] used the homotopy perturbation method to obtain nonlinear to linear frequency ratio
of the FG rectangular plate. By using Fourier series, J. Woo et al. [20] investigated the effects
of some parameters of the system on the dynamic behavior of FG plate. Malekzadeh and
Monajjemzadeh [21] employed the CPT to analyze the nonlinear response of FG plates under
moving load. Dinh Duc and Hong Cong [22] used the Runge Kutta method to determine the
nonlinear dynamic response of an FG plate resting on elastic foundations that subjected to
thermal, mechanical and damping loads. Fung and Chen [23] established nonlinear equations
for an imperfect FG plate and then they considered effects of volume fraction index, geometric
imperfection and initial stress on nonlinear vibrations. The finite element formulation, based on
HSDT, has been developed by Vahid Fakhari et al. [24] to analyze the nonlinear free and forced
vibrations of FG plate with surface bonded piezoelectric layers in thermal environment.

Y.X. Hao et al. [25] dealt with the nonlinear dynamic analysis of FG cantilever plate under
transversal excitation in thermal environment by using asymptotic perturbation method. They
employed Runge-Kutta method and asymptotic perturbation method to obtain the nonlinear
dynamic responses of the plate. An asymptotic perturbation method is used by Zhang et al. [26]
to investigate the nonlinear responses of FG plate subjected to through the thickness thermal
loading combined with external and parametric excitations. Based on HSDT, Duc et al. [27]
presented an analysis of the nonlinear vibration of imperfect FG thick plates under blast and
thermal load resting on the elastic foundations. For design of some engineering structures such
as propulsion systems, one-directional-FGMs can not be so effective and components require
advance materials whose properties are changed in two or multi directional simultaneously.
Hence, the two-directional functionally graded materials (2D-FGMs) are introduced and many
investigation have been reported on static and dynamic analysis of 2D-FG structures. Some
studies have been worked on free and forced vibration analysis of 2D-FG beams [28-33]. Some
researchers investigated vibration analysis of 2D-FG shells [34,35]. The number of published
papers focused on the vibration analysis of bi-directional FG plates is still very limited. Lieu et
al. [36] used NURBS basis functions to model and analyze free vibration and buckling
responses of in-plane bi-directional functionally graded (IBFG) plates. By using isogeometric
analysis, Lieu et al. [37] studied bending and free vibration analysis of IBFG plate with variable
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thickness. By finite annular prism methods,Wu and Yu [38] investigated free vibration analysis
of bi-directional FG annular plates. Kumar and Lal [39] calculated natural frequencies of free
axisymmetric vibration of two-directional FG annular plates resting on Winkler foundation
using differential quadratic method. Shariyat and Alipour [40] employed differential
transformation method to obtain a semi analytical solution for free vibration of two-directional
FG circular plates resting on two-parameter elastic foundations. Alipour and Shariyat [41]
employed a semi analytical solution for free vibration of variable thickness two-directional FG
circular plates resting on elastic foundations. Sobhani Aragh et al. [42] studied the three-
dimensional free vibration and vibrational displacements characteristics of two-dimensional
functionally graded fiber-reinforced (2-D FGFR) curved panels with different boundary
conditions. By using Chebyshev collocation technique and differential quadrature method,
Kumar [43] analyzed free vibration of two-directional FG annular plates. On the basis of
classical plates theory and first order shear deformation theory, Lal and Ahlawat [44,45] studied
buckling and vibrations of two-directional FG circular plates subjected to hydrostatic in-plane
force. Shariyat and Alipour [46] developed a power series solution for free vibration and
damping analysis of viscoelastic two-directional FG plates with variable thickness on elastic
foundations. Tahouneh and Naei [47] analyzed three dimensional dynamic of bi-directional FG
rectangular plates resting on two-parameter elastic foundations based on the three dimensional
elasticity theory. Tahouneh and Yas [48] presented semi analytical solution for three
dimensional vibration analysis of thick multidirectional FG annular sector plates under different
boundary supports. Yas and Moloudi [49] studied Three-dimensional free vibration analysis of
multi-directional FG piezoelectric annular plates on elastic foundations via state space based
differential quadrature method. In many practical engineering problems, FG structures can
work in more severe circumstances such as aerospace shuttles and crafts, nuclear plants,
implants, etc. Thus, material property variations in two or three directions are demanded in lieu
of only one direction as in the conventional FGMs. To meet those real requirements, an
exhaustive understanding of their responses under various conditions is necessary. In addition,
from the above mentioned literature, most of the studies on vibration of two-directional FG
plate are limited to linear case and there is no reported work on nonlinear vibration of two-
directional FG rectangular plate. This article is therefore conducted as the first attempt for
scientific contributions. In this research, the nonlinear vibrations of two-directional FG
rectangular plate are investigated for the first time. For this purpose, firstly, the partial
differential equations of motion are developed based on first order shear deformation theory
and von Karman nonlinearity strain displacement relations. Afterward, by applying Galerkin
method, the nonlinear partial differential equations are transformed into nonlinear ordinary
differential equations. Finally, modified Lindstedt-Poincare method is used for solving
analytically the nonlinear governing equation of transverse motion. The volume fraction
distribution is assumed to be symmetrical for characterizing the in-plane material
inhomogeneity. The effects of some key system parameters such as vibration amplitude, volume
fraction indexes and aspect ratio on the nonlinear to linear frequency ratio are discussed in
detail. The results are in good agreement with those obtained in previously published papers.

2 Geometry and properties of plate

Figure (1) depicts an 2D-FG rectangular plate composed of alumina and aluminium of length
a, width b and thickness h which is simply supported on all four sides. The origin of the
Cartesian coordinate system is located in the mid-plane of the plate. Material properties P of
the 2D-FG plate are assumed to vary continuously alter in the x — y plane according to power
law distribution. These properties can be expressed as:
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P(x,y) = RV:(x,y) + BV (x,y) (1)

If the volume fraction of the ceramic part is V¢ and the metallic part is Vm, the sum of all the
volume fractions must be one and is written as:
V.+V,=1 (2)

Based on the power law distribution, the volume fraction of a 2D-FGM plate is supposed to
change continually alter in the x — y plane in the following form:
m

V(e y) = (g)n (%) . mmz=0 3)

Where n and m designate the power indexes in the x — and y — axes, respectively.
Material properties have the forms:

By = B+ =50 (3) () ©
p(x,¥) = pm + (pc — Pm) (g)n (%)m ®)

Where E and p are young’s modulus and mass density of the 2D-FG plate, respectively.
Material properties used in the 2D-FG plate are listed in Table (1).

3 Equations of motion

The displacement field (u, v, w) of the FG plate according to the FSDT can be expressed as
[50]:

u(x»y'z't) =u0(nyrt)+Z¢x(ny't) (6)
v(x,y,2,t) = vo(x,y,t) + 2z, (x,y,t) (7)
W(x; y: Z, t) = Wo(x, YJ t) (8)

Where uy, v, and wy are displacements of any point on the middle surface of the FG plate in
the x, y and z directions, respectively. ¢, and ¢,, are rotations about y and x axes, respectively.
Assuming large deformations, the von Karman nonlinearity strain-displacement relations are
given as follows:

Cduy  10wp\® 0, 9
fax =50 E(W)ZHW ©
vy 10wpn? 0,
_9vo  L1rowo\" Oy 10
Evy 6y+2(8y) +Zay (10)
_ (Ouy  dvy  Owy awo) 0, 0y,
ny‘(ay+ax+ ax 3y ) T oy ox D
ow,
Vxz = a_xo'l' &x (12)
LI (13)
yz ay y

The governing equations of the first-order shear deformation theory will be derived using the
dynamic version of the principle of virtual displacements:

T
f (8U + 8V — 5K) dt = 0 (14)
0
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Figure 1 Geometry of a 2D- FG rectangular plate

Table 1 Material properties for 2D-FG plate [50]

Properties Ceramic (Al,03) Steel (AD)

Young’s module 380 Gpa 70 Gpa

Density 3800 22 2702 ¢
m3 m3

Where the virtual strain energy 6U, virtual work done by applied forces 6V, and the virtual
kinetic energy 8K are given by:

h
+_
— 2 (0) (1) (0) (1) (0) (1)
6U = fﬂ .[_ﬁ [axx (5€xx + z8 ey, ) + 0yy (5€yy + Z5£yy) + Oxy ((Syxy + 26Yxy )
2

0

(15)
+ axzé‘y,gg) + ayZSngg)] dz ; dxdy
8V = — f [qow,]ldxdy (16)
Qo
4
5K = f f . PG Y) [(o + 2z ) (8o + 286) + (D + 26y, ) (6 + 28¢,,)
T (17)

+ Vg Vg |dzdxdy
Substituting for §U, 6V, and 6K from Eq. (15)-(17) into the virtual work statement in Eq. (14)
and integrating through the thickness of the 2D-FG plate gives:
fOT {fﬂ [Nxxds,(cg) + Mxxds,(ci) + Nyy6sj(,§,) + Myy(Se}%,) + nydy,g),) + Mxy6y,£31,) + Qx(Sy,gg)
0 +Qy 81 — qdwy — Iy (itg Sty + Vo8 + VirgSVirg) (18)
(et + dhy S5 + St + 5y 590) — I (25655 + qsyaqsy)]} dxdy

Where N, M and Q are called the in-plane force resultants, moments resultants and transverse
force resultants, I, I; and I, are inertia related terms and q is the external load which is not
considered in free vibrations. The force, moment, transverse force resultant and mass moments
of inertia resultants of the 2D-FG plate can be written in terms of stress components across the
thickness of the plate:
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XX +% O-xx
Nyyt = f {Uyy} dz (19)
h
N, xy 2 Txy

Mxx +% O-xx
Myy = fh {Uyy}ZdZ (20)
M,y 2 (Txy
- e
Qy _% T)’Z
I L]
{I:} = f hz { z }p(x, v)dz (22)
I, -7 22

Where K is so-called the shear stress correction factor and is equal to 5/6.
Based on FSDT, the stress-strain relations are given by:

Oxx Qu1(%y) Qu2(x,y) 0 0 0 Exx
Oyy Q2(x,y)  Q22(x,y) 0 0 0 Eyy
Tyz = 0 0 Q44_ (x, y) 0 0 yyz (23)
Txz 0 0 0 Qss(x,y) 0 Vaz
Txy | o 0 0 0 Qg6 (x, y)J Yxy
Where stiffness coefficients Q;; are defined as:
E(x,y)
Q11(x,y) = Q22(x,y) = 1= 2 (24)
E(x,y)v
Q12(x,y) = 1— 2 (25)
E(x,y)

Qas(x%,y) = Qs5(x,y) = Qee(x,y) = 2(1+v) (26)

The Poisson ratio v in the above relations is constant and equal to 0.3.

By relieving (dug, vy, Swy) of Eq. (18) using integration by parts and setting the coefficients
of (duy, dvy, 6wy) to zero separately (i.e., using the fundamental lemma of calculus of
variations), the General form of equations of motion for 2D-FG rectangular plate in the
framework of the first-order shear deformation theory will be obtained:

INge 0Ny  0%uy 0%,

- 0, ;2 % 27
ax oy e Thge @7
ONy, 0Ny, 0%v, 0%,
= 28
ay T ox e thoe (28)
an aQy 62w0
Thx Ty = 29
o + 3y + N (wo) = o 5:2 (29)
My, OM,, 0%uy 0%,
XXX g =1, -2 30
ax dy G=hgm thaa (30)
oM,, oM 0%v 32¢
yy Xy — 0 Yy 31
dy T ox @ Thge thge G
N (wy) is:
Wo) = 5x M gy Y 9y ay\' Y ay Y ox (32)

In-plane inertia effects and rotary inertia effects can be ignored due to the thinness of the plate
[51]. As a result, the Egs. (27)-(31) reduce to:

ONyx | ONxy _

ot gl =0 (33)
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JdN dN.
Do B = (34)
an aQy aZWO
o 35
Ix + ay +N(W0) 10 atz ( )
oM oM
oM oM
oy 2o, = o

By replacing Eq. (23) into Eq. (19)-(22) and substituting the results into the Eq. (33)-(37),
equations of motion can be written in terms of displacements:

(38)

0%v(x,y,t) *v(x,y,t) dw(x,y,t) 0% w(x,y,t)
42 42
x By + 2Q66(x,y) 9%y +2Q12(x,y) 3y 9% 0y

ow(x,y,t)0%w(x,y,t) 0% u(x,y,t) 0% u(x,y,t)
2Q66(x,y) dy 3x 0y +2Q11(x,y) ez 2Q66(x,y) T2
anl(x'}’)au(x:y' t) aQ66(ny)au(x'YJ t) anz(xIY)aV(x'}’:t)
+2 + 2 + 2
0x dx dy dy dx dy
aQéﬁ(ny)aV(xry' t) azw(x:%t)aw(x:%t)
2 ay ax + lel(xl }’) axz ax

azw(x'y't)aw(x'}’:t) anl(x'Y) aw(x,y,t) 2
+2Q66(xJ 3’) ayz ax + ax ax

0Qs6(x, y) Iw(x,y, ) Iw(x,y, 1) | 9CQ12(x,y) (GW(x, Y, t))z _
dy dy dx d0x dy

2Q12(x,y)

_|_

+2 0

92u(x,y,t) 9% u(x,y,t) dw(x,y,t) 02 wix,y,t) (39)
“oxdy + 2Q66(x, }’)W +2012(x,y) % 22 3y +
aw(x,y, t) aZW(x,y’ t) +2 anz(x'}’) au(xry' t) + 26Q66(x7y) au(x'}’» t)
dx dx dy dy d0x d0x dy
0*v(x,y,0) 02v(x,y,t) _0Q2(x,y)dv(x,y,t)
+2Q66(x,y) ez T 2Q22(x,y) 3y7 +2 % 5

ast(x'Y)aV(x'}’:t) aw(ny't)aZW(ny't)
+2 ax ax + 2Q66(x;Y) ay axz

ow(x,y,t) 0*w(x,y,t)  9Q12(x,y) dw(x,y,t),
+2Q22(x'y) ay ayz + ay ( ax )

4o 0Q66(x,y) Ow(x,y, t) Ow(x,y,t) N 0022 (x,y) (aW(x, Y, t))2 _
ox dy ox dy ay
anl(xl J’) <a W(X, Y, t)>3 + a W(x, Y, t) anZ(xi Y) (a W(X, Y, t)>2 (40)

2012()6, }’)

2Q66(x,y)

0

dx dx dy dy dx
aW(x:}’»t) aQee(x'}’) aW(x'y't) 2 aZW(x»y' t)
2>, 3y o T35z Wby =,

92 w(x,y,t) awlx,v,)\° _92w(xy,t) aw(x,y,0)\
TQQ(%}’)(T +Za—yzQ66(x»3’) T ox

au(x:y; t) 5Q11(X.y)aw(x;y' t) aw(nyl t) 25Q12(X:J’)6W(x;% t)
+2 + +
dx d0x dx dy dx dx

ow(x,y, t))2
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6 v(x,y,t) 0Q12(x,y) dw(x,y, t) ast(x. y)ow(x,y,t) N
6y 0x 0x 0x dx
aW(x:y: t) ast(x:J’)aW(x;y, t) au(nylt) 6Q66(xIY)aW(xiyJ t)
2 +2 +

dy dx dx dy dy dx

av(x Y;t) aQGG(x }’)aw(x y:t) 62 u(x y;t) aW(xIY;t)

dx dy 0x 2 Q12 (x,y) dx *
9%2v(x,y,t) ow(x,y,t) ow(x,y, t) 82 w(x,y,t) ow(x,y, t)
“oxdy Q12(x,y e +4 3y x 0y Q12(x,y) T

9% u(x,y,t) ow(x,y,t) _0%v(x,y,t) aw(x,y,t)
Za—yzst(x:Y) ax +2 9xdy Q66(x:y)T+
ow(x,y, t)0*w(x,y,t) ow(x,y, t) 6 ulx,y,t) dw(x,y,t) 0Q:5(x, y)
8 Qss(x,y)
dy dx dy d0x dx dy dy
aw(x,y, )\’ 002,(x,y) _av(xy, ) dw(x,y,t) 30, y) _dw(x,y,t) 0Q44(x, )
+2 +2
dy dy dy dy dy dy dy
+2 a u(x'}’» t) a W(x'}’» t) aQse(x'}’) a V(X }’: t) a W(X }’: t) aQéﬁ(x }’)
dy dy dx dx dy dx
du(x,y,t) 9> w(x,y,t) dw(x,y, )\ 02 w(x,y,t)
+2 ax 922 Q11(x,y) dy 9x2 Q2(x,y) +

BV(x y,t) 02 w(x,y,t) ey 42 du(x,y,t) 0> w(x,y,t)

dy axz ey ox dy?
BW(x y,t) 0% u(x,y,t) 62v{x y,t) E)W(x y,t)
3y 9x dy Q2(x,y) + 3y? Q22 (x,y) +
aw(x,y, t)\ 0% w(x,y,t) dv(x,y,t) 0> W(x, y,t)

’ ( dy > ayr V)25, dy?

't 0py(x,y,t *w(x,y,t
WY ey + %Qﬂ(mu%

dy?
0 t 2%v(x,y,t)0 Ly, t
2 2P gy 42 RO g )

2 <6 w(x,y, t)) 0% w(x,y,t) dw(x,y,t) 0% u(x,y,t)

Q12(x,y) +

Q22(x,y) +

Qss(x,y) +

2
3y 922 Qes(x,¥) + 3y 3% 0y Qes(x,y) +

40 u(x,y,t) 0 w(x,y,t) av(x,y,t) 0 wx,y,t)
3y 9% 0y Qes(x,y) +4 ax % dy Qes(x,y) +

;0 9Q44(x, 02 wix,y, t
st(x y) by oy ) + 2 042;96 y)d)y(x,y,t)—z W;fzy )

0 Ly, t 0?2 Ly, t 0° LY, t 41
—d’g)fayy e >—¢g(’;yy L hQuy oy TREEXD (D
0%y (x,y,t) aQn(x y) 0px(x,y,t) 0Q¢6(x,y) 0px(x,y,1)
+h*Qos(x,7) y? +he ox ox +h ay dy
0Q66(x,y) 0y (x,y,t) 0Q12(x,y) 0y (x,y,t) ow(x,y,t)

2 2 hidl Sl AR

h dy dx +h dx dy ~ 1205500 0) dx
12055(x'Y)¢X(x'yl t) =0

62¢X(x' Y, t)

02 R
h?Qq2(x,y) 9x 0y + h?Qee(x, J’)M + h?Qe6(x,y)

dx dy
anZ(x'y) ad)X(x:Y; t) aQGG(xly) ad)X(x;y: t) azd)Y(x;y: t)
2 2 2 - - 7 -
+h ay dx + h dx ay + h QZZ(ny) ayz
0Q66(x,y) 0y (X, y,t) ., 0Q22(x,y) 0¢y(x,¥,t) ow(x,y,t)
ox ox Th dy dy 12Q44(x:7) ay

—12Q44(X, J’)d’y(x: Y t) =0

p(x,y) =0

h2Q12(x: y)

az(nbY(xJ Y, t) (42)
d0x?

+h?




An Analytical Study for Nonlinear Vibration Analysis of ... 41

The following boundary conditions for simply supported plate according to the FSDT are
considered:

at x=0,a Vo =Wy = Nyy = Myy = ¢, =0 (43)
at y=20,b Uy =Wy =Ny =My, = ¢, =0 (44)

The boundary conditions in Eq. (43) and (44) are satisfied by the following admissible functions
[52]:

uy(x, y,t) = i i Upq(t) cos(ax) sin(By) (45)
p=1q=1

vo(x, v, t) = i i Voq(t) sin(ax) cos(By) (46)
p=1q=1

wo(x,y,t) = i i Wpq (t) sin(ax) sin(By) (47)
p=1q=1

O (x,y,t) = i i Xpq (t) cos(ax) sin(By) (48)
p=1q=1

Py (x,y,0) = i i Y, (t) sin(ax) cos(fy) (49)
p=1q=1

Where a = % and p = %, and p and q are the half-wave numbers.

For the simplification, a set of dimensionless parameters are introduced as:

_ ., (wyw) (XY _qjaa _ _E _ _p
@ow === @N=(33) eI=G5) F=fg r= - =
ot [E (50)
h | pPm

Considering only one term in the Eq. (45)-(49) and by replacing they into Eq. (38)-(42) and
then applying Galerkin method the time dependent nonlinear differential equations of motion
after applying dimensionless parameters and some mathematical simplifications can be derived
as:

C11W2 + Clzl_] + C13I7 =0 (51)
C21W2 + C22U + C23V = 0 (52)
d:w _ S o _
Cs1 — g+ CaaW + CsgUW + C3uVW + C3sW3 + C36X + C37¥ = 0 (53)
C41W + C42X + C43Y = 0 (54)
C51W + C52X + C53Y =0 (55)

Where C;; are non-dimensional coefficients that are related to the dimensions and plate

properties and are presented in Appendix A. By substituting U,V, X,and Y in terms of W (t)
obtained from the Eq. (51), (52), (54), and (55), into the Eq. (53) results in the nonlinear time-
dependent equation in W (t):
azw
dt?

+aW+yW3=0 (56)

Where the coefficients @ and y’ are given in Appendix B.
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4 Solution method

In the present research, Modified Lindstedt-Poincare method is used to solve Eq. (56). The
assumed initial condition is expressed as:

_ Whax
wWo)=—"——=4 = (57)
© h dt
Where A is the non-dimensional maximum vibration amplitude. For the necessity of proposed

method, a positive, dimensionless and small parameter must be defined. Therefore Eq. (56)
should be rewritten as follows:
da:w ay

o taW et W0 (58)
Where € is bookkeeping parameter and is defined as follows:
h
€= E (59)
Linear frequency of FG plate from Eq. (58) is:
a = w? (60)
According to the References [53, 54], W (t) and a can be written as a series in €:
W=W0+EW1+EZWZ+“' (61)
a=wi +ec; +€%c, + (62)

Where nonlinear frequency wpy; and cq,cy,...and ¢; (fori =1,..,0) are unknown
coefficients which are calculated in next section.

By Substituting Eq. (61) and (62) into Eq. (58), and then equating coefficients €°, el and €?
to zero, yields the following equations:

- _ _ dw,
€0 Wy + Wy =0 Wy(0) = A d—TO(o) =0 (63)
- _ _ _ _ _ dw.
el Wy + wW, = —c, Wy — BWE —yWZ W, (0) =0 d—Tl(O) =0 (64)
2 . 27 i 7 IR, 7 72 7 AW,
€” WZ + w W2 = _C2W0 - C]_Wl - 2‘8WOW1 - 3]/W1W0 Wz(o) =0 ?(0) (65)
=0

The result of solving Eq. (63) with the corresponding initial condition is as follow:

W, = A cos(wt) (66)
Substituting Eq. (66) into Eq. (64) gives:
- _ 3 1
W + w?W, = (—clA - ZVA3> cos(wt) — E,BAZ cos(2wt) (67)
In order to have a periodic response for W, secular term must eliminate in Eq. (67). So:
3
S _ZYAZ (68)
The solution of Eq. (67) is:
—(BAZ yA? BA? yA3 BA?
W, = <W " 32072 cos(wt) + WCOS(Z(M) + 3707 cos(Bwrt) — Ev (69)

Similarly, by substituting Eqs. (66) and (69) into Eq. (65) and avoiding the secular term,
unknown coefficient c, is obtained:

pyA3  3y2A* 5B%2A% 3ByA3 3y2aAt

27 %407 T 12802 ' 60?7  4w? | 64w’

(70)
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Eq. (62), (68), and (70) give the nonlinear natural frequency, that is:

2

3 3 108242  3y2A*
(0( + ZyeAZ) + \/(a + ZeyAZ) + (2,8)//13 —— 33 )62 (71)
Wy, = )
After solving Eq. (65), W, is obtained to be:
_ ¢, BA? 243 21pyA*
i, _ (G842 _B7A 218y
2% 3w* 32w*
5¢,842 c¢;yA®  61B%A3 17pyA*  y?A°
— — — cos(wT)
Jw*  256w* | 144w* 320* 256w*
c ,BAZ ,BZA3 ,B)/A4
+ (18w2 902 602 cos(2wT) (72)
ciyA®  BPA®  ByA*  3yPA° BVA4
* (256w2 1802 T 3207 T 102802 ) ©OSBWD ¥ | gz | 05 (H0T)
+<1024 )cos(Sa)T)
Eventually, the second order approximation of the solution become as follows:
Wan = WO +€ Wl + 62 WZ (73)

5 Comparison study

In this section, to examine the accuracy and efficiency of the present formulation, the results of
this paper are compared with the existing data available in previously published papers.

As the first comparison study, frequency parameters ff = wh \/7 of simply supported FG

square plates are given in Table (2), for different values of length to thickness ratio and power
law exponent. Included in this table are also the results of the exact solutions of FG rectangular
plates based on the first and third-order shear deformation plate theory reported by Hosseini
Hashemi et al. [10], element-free kp-Ritz method obtained by Zhao et al [11]. It is clearly
evident that the excellent agreements are found between the results.

As seen in the previous section, the nonlinear equation of transverse motion for 2D-FG
rectangular plate is solved analytically by the modified Lindstedt-Poincare method. In order to
ensure the accuracy and convergence of this solution approach, the nonlinear to linear frequency
ratio of FG rectangular plate based on first order shear deformation theory is obtained and then
compared with the results given by Yazdi [15]. From Table (3), there is little difference between
present results and Yazdi [15]. The reason for this difference is that the shear effects are ignored
in the reference [15]. In other words, the results of the present study are more accurate than the
reference [15].
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Table 2 Comparison of fundamental frequency parameter
p= wh\/% for Al/Al, 03 square plates

a n
h 0 0.5 1 4 10

References

H(H 0.0148 0.0128 0.0115 0.0101 0.0096
20 0.0146 0.0124 0.0112 0.0097 0.0093

Present 0.0148 0.0126 0.0113 0.0098 0.0094
study

H‘H 0.0577 0.0492 0.0445 0.0383 0.0363
10 00567 0.0482 0.0435 0.0376 0.0359

Present 0.0581 0.0494 0.0445 0386 0.0369
study

H(H 0.2112 0.1806 0.1650 0.1371 0.1304
5 02055 0.1757 0.1587 0.1356 0.1284

Present 0.2158 0.1847 0.1672 0.1435 0.1356
study

6 Results and discussion

In this section, the influences of some key plate parameters such as dimensionless vibration
amplitude (A), aspect ratio (%), width FG index (m) and length FG index (n) on the nonlinear

frequency ratio (%) of 2D-FG rectangular plate are presented in tabular and graphical forms.
L

The results are reported for plate which is made of a mixture of aluminum (Al) and alumina
(Al,03) in which their material properties are listed in Table (1). It should be note that the
nonlinear frequency ratio is described as the ratio of nonlinear natural frequency to linear
natural frequency in all cases in this section.

Table (4) provided the effects of dimensionless vibration amplitude (4) on the nonlinear
frequency ratio (%) of 2D-FG rectangular plate for different volume fraction indexes m and
L

n. The numerical results are performed for aspect ratio % = 1 and length to thickness ratio % =

20.

This table shows that higher dimensionless vibration amplitude results in a larger nonlinear
frequency ratio for different volume fraction indexes. In other word, the discrepancy between
nonlinear and linear frequency is deeply depend on the vibration amplitude.

Table (5) shows the effects of length-thickness ratio % on nonlinear frequency ratio of 2D-FG
square plate for different values of volume fraction indexes with A = 1. It can be seen from
Table 5, the nonlinear frequencies ratio of the of 2D-FG square plate will enlarge with the
decreasing of length-thickness ratio. This is due to as % increases, the plate becomes more
flexible and hence its effective stiffness reduces. It is implied that the 2D FG plate with a higher

length-thickness ratio has a lower nonlinear frequency. Figure (2) shows the variation of the
nonlinear frequency versus width FG index (m) for different values of length FG index (n)

when 4 = 1and % = 20. As seen from the figure, nonlinear frequency decreases on increasing
width FG index.
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Table 3 Comparison of nonlinear to linear frequency ratio

for square FG plate
a
(G = 40)
Wox n= O.ZCPT n= 10CPT
h FSDT [15] FSDT [15]
0.25 1.0529 1.0467 1.0473 1.0413
0.5 1.1962 1.1758 1.1766 1.1563
0.75 1.4005 1.3641 1.3630 1.3266
1.0 1.6428 1.5911 1.5860 1.5335
1.25 1.9086 1.8426 1.8323 1.7645
1.5 2.1895  2.1103  2.0937  2.0115
1.75 24805 23890 23654  2.2996
2 27785  2.6755  2.6442  2.5355

Table 4 Nonlinear frequency ratio for 2D-FG square plate (% = 20)

m
A n 0 1 2 5 10
0 1.0597 1.0597 1.0666 1.0812 1.0905
1 1.0597 1.0597 1.0646 1.0725 1.0766
0.25 2 1.0629 1.0619 1.0632 1.0656 1.0677
5 1.0701 1.0656 1.0620 1.0590 1.0594
10 1.0732 1.0669 1.0622 1.0583 1.0582
0 1.4449 1.4449 1.4888 1.5784 1.6333
1 1.4449 1.4449 1.4757 1.5254 1.5504
0.75 2 1.4654 1.4590 1.4672 1.4823 1.4953
5 1.5108 1.4826 1.4595 1.4401 1.4430
10 1.5299 1.4903 1.4609 1.4354 1.4347
0 1.9976 1.9976 2.0846 2.2592 2.3646
1 1.9976 1.9976 2.0587 2.1564 2.2051
1.25 2 2.0383 2.0257 2.0418 2.0718 2.0974
5 2.1277 2.0723 2.0267 1.9881 1.9938
10 2.1651 2.0875 2.0293 1.9786 1.9772
0 2.6139 2.6139 2.7436 3.0020 3.1569
1 2.6139 2.6139 2.7051 2.8501 2.9222
1.75 2 2.6748 2.6560 2.6800 2.7247 2.7627
5 2.8077 2.7254 2.6575 2.5998 2.6083
10 2.8631 2.7480 2.6614 2.5856 2.5835
0 3.2586 3.2586 3.4302 3.7708 3.9744
1 3.2586 3.2586 3.3792 3.5708 3.6657
2.25 2 3.3391 3.3143 3.3461 3.4052 3.4553
5 3.5148 3.4061 3.3162 3.2398 3.2511
10 3.5879 3.4360 3.3214 3.2210 3.2181

Figure (3) shows the variation of the nonlinear frequency versus length FG index (n) for
different values of width FG index (m) when A = 1 and % = 20. Results show that increasing

the length FG index results in nonlinear frequency decreases. It follows from figures (2) and
(3) that the nonlinear frequencies of the 2D-FG rectangular plates are strongly influenced by
volume fraction indexes. In fact, the higher materials indexes mean the less volume fraction of
ceramic phase in the 2D-FG plate, which induces more reduction in the total stiffness of the
plate. Through the fact that a vibration frequency is directly proportional to the plate stiffness,
e.g. Young’s modulus, whilst it is inversely proportional to the plate mass one can be inferred
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that by increasing volume fraction indexes, the nonlinear frequency decreases. Also From these
figures it’s conclude that smaller volume fraction indexes play a significant role in the nonlinear
frequencies. Figures (4) and (5) are a backbone curve that exhibits effect of vibration amplitude
on nonlinear frequency ratio of 2D-FG rectangular plate for different values of volume fraction
indexes n and m when % = 20. As is clear from this figures, volume fraction indexes have
noticeable effect on the nonlinear frequency ratio. By increasing the volume fraction indexes,
backbone curves go away from vertical axis. In other word, by increasing volume fraction
indexes, the degree of hardening nonlinearity behavior decreases. Moreover, it should be note
that all response curves show initial softening type behavior, turning to hardening type for larger
vibration amplitudes although the hardening degree is different.

Figure (6) describes the variation of the nonlinear frequency ratio with the aspect ratio for

different values of length FG index (n) while total area of plate is constant when A = 1, % =

20 and m = 0. It is observed that for different n fast decreasing in nonlinear frequency ratio is
obtained with an increase in aspect ratio for% < 1.25, while for 1.25 < %, nonlinear frequency

ratio is increased by increasing aspect ratio. Figure (7) depicts the variation of the nonlinear
frequency ratio versus the aspect ratio for different values of width FG index (m) while total

area of plate is constant when A = 1, % = 20 and n = 0. It is observed that for different m
decreasing in nonlinear frequency ratio is obtained with an increase in aspect ratio for % < 0.8,

while for 0.8 < %, nonlinear frequency ratio is increased by increasing aspect ratio.

Table 5 Nonlinear frequency ratio for 2D-FG square plate (4 = 1)

a m
h n 0 1 2 5 10

0 1.8036 1.8036 1.8743 2.0203 2.1089

1 1.8036 1.8036 1.8531 1.9339 1.9746

5 2 1.8358 1.8257 1.8391 1.8653 1.8870

5 1.9103 1.8637 1.8276 1.7982 1.8031

10 1.9416 1.8764 1.8301 1.7904 1.7891

0 1.7286 1.7286 1.7951 1.9301 2.0121

1 1.7286 1.7286 1.7752 1.8504 1.8881

10 2 1.7595 1.7499 1.7623 1.7856 1.8054
5 1.8284 1.7856 1.7509 1.7218 1.7263

10 1.8573 1.7973 1.7530 1.7146 1.7135

0 1.7093 1.7093 1.7747 1.9069 1.9871

1 1.7093 1.7093 1.7552 1.8289 1.8658

20 2 1.7399 1.7305 1.7426 1.7651 1.7844
5 1.8073 1.7655 1.7312 1.7022 1.7065

10 1.8356 1.7770 1.7332 1.6951 1.6941

0 1.7039 1.7039 1.7690 1.9003 1.9801

1 1.7039 1.7039 1.7496 1.8229 1.8595

50 2 1.7344 1.7250 1.7370 1.7594 1.7785
5 1.8013 1.7598 1.7256 1.6967 1.7010

10 1.8294 1.7712 1.7276 1.6896 1.6886

0 1.7031 1.7031 1.7682 1.8993 1.9790

1 1.7031 1.7031 1.7488 1.8220 1.8586

100 2 1.7336 1.7242 1.7362 1.7585 1.7776
5 1.8005 1.7590 1.7248 1.6959 1.7002

10 1.8285 1.7704 1.7268 1.6888 1.6887
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7 Conclusion

In this paper, the nonlinear free vibration analysis of 2D-FG rectangular plate are studied for
the first time. For this purpose, the nonlinear partial differential motion equations are first
developed based on FSDT and von Karman nonlinearity strain displacement relations. Then,
nonlinear ordinary differential equations are obtained by applying Galerkin method. MLP
method is used to obtain the analytical solution for the nonlinear vibrations of 2D-FG plate.
The results are in good agreement with those obtained in previously published paper and
numerical method. Finally, the effects of some key system parameters such as vibration
amplitude, volume fraction indexes and aspect ratio on the nonlinear frequency are investigated.
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Figure 6 Aspect ratio effect on the nonlinear Figure 7 Aspect ratio effect on the nonlinear
frequency ratio for different values of n (m=0) frequency ratio for different values of m (n=0)

In summary, the results of this research demonstrated that:

1. By increasing vibrations amplitude the nonlinear frequency increases, as well as
the discrepancy between nonlinear and linear frequency is deeply depend on the
vibration amplitude.

2. By increasing the gradient indexes results the reduction of nonlinear frequency.

3. Degree of hardening nonlinearity behavior of the 2D-FG plate is highly depend
on the length and width FG indexes.

4. Aspect ratio have significant effects on the nonlinear frequency.

5. Modified Lindstedt-Poincare method is a powerful and easy tool for solving the
strongly nonlinear equation. The results from analytical and numerical methods are in
excellent agreements.
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Nomenclature

A Non-dimensional maximum vibration amplitude
E.  Modulus of elasticity of ceramic
E,, Modulus of elasticity of metal
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Mass inertia related term

Moment resultant

Force resultant

Material properties

Stiffness coefficient

Half wave number (y-direction)

Half wave number (x-direction)

Rotation about the y axes

Rotation about the x axes

Virtual strain energy

Virtual work done by applied forces

Virtual kinetic energy

Displacements of any point on the middle surface of the plate in the x direction
Displacements of any point on the middle surface of the plate in the y direction
Displacements of any point on the middle surface of the plate in the z direction

EAR<CE®eTOTZX-

S

Greek Symbols

Density of ceramic

Density of metal

Normal strain

Shear strain

Shear stress

Normal stress

Poisson’s ratio

Book keeping parameter
Linear natural frequency
wy; Nonlinear natural frequency

ML QA< MDD
s P
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Appendix. B
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