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Three-Dimensional Elasticity Solution of
Single Layer Piezoelectric Panel
This research presents a semi analytical solution of finitely long, sim-
ply supported, orthotropic, piezoelectric, radially polarized, shell
panel under pressure and electrostatic excitation. The general so-
lution of the governing partial differential equations are obtained by
the method of separation of variables. The displacements and elec-
tric potential are expanded in appropriate trigonometric Fourier se-
ries in the circumferential and axial coordinate to satisfy the bound-
ary conditions at the simply-supported circumferential and axial
edges. The governing ordinary differential equations are solved by
the Galerkin finite element method. In this procedure, the quadratic
shape function is used in each element. Numerical examples are pro-
vided for typical external pressure on outer surface of a single layer
piezoelectric panel.
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1 Introduction

The coupling effect existing between the elastic and electric fields in piezoelectric materials is
used in various engineering applications. The direct piezoeffect is used in sensors in electrome-
chanical transducers to measure the deformation from the induced electrical potential differ-
ence. The inverse piezoeffect is used in electromechanical actuators for controlling an entity
by the application of appropriate electrical potential differences. The piezoelectric materials
have enormous potential for use as distributed actuators and sensors for active control of smart
structural systems [1]. Very few exact solutions of the three-dimensional field equations are
available for coupled response of piezoelectric elements to electromechanical loading. These
analytical solutions are needed to assess the accuracy of the various two-dimensional plate and
shell theory formulations [2].

Exact analytical solutions have been presented for the direct and inverse piezoelastic prob-
lems of infinitely long, simply-supported, cylindrically orthotropic circular cylindrical panel in
cylindrical bending under pressure and electrostatic excitation. Detailed results have been pre-
sented for sinusoidal, uniform and patch loadings [2]. Ray et al. [3, 4] presented exact solution
for static analysis of a simply-supported piezoelectric flat panel and a layered intelligent flat
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panel under cylindrical bending. Three-dimensional exact analysis of simply-supported rectan-
gular plate coupled with distributed sensors and actuators have been presented by Ray et al. [5].
Mitchell and Reddy [6] have presented a power series solution for static analysis of an ax-
isymmetric problem of axial loading on a composite cylinder with surfacebonded or embedded
piezoelectric laminae. Ren [7]has presented the exact elasticity solution of simply-supported
laminated circular cylindrical panels in cylindrical bending. Exact solution of orthotropic cylin-
drical shell with piezoelectric layer under cylindrical bending have been studied by Chen et
al. [8]. Also, the piezoelastic solution of infinitely long cylindrical panel and shell structures is
presented by Kapuria et al. in [9]. Shakeri et al. have presented elasticity solution of finitely
long, simply-supported, orthotropic, piezoelectric shell panel under pressure and electrostatic
excitation [10], and elastic solution of orthotropic thick laminated cylindrical panels under dy-
namic loading [11].

In this work we present a semi analytical solution of a finitely long, simply supported, or-
thotropic, piezoelectric, radially polarized, circular cylindrical shell panel under pressure, where
panel is closed circuit. The general solution of the governing differential equations is obtained
by the method of separation of variables. The displacements and electric potential are expanded
in appropriate trigonometric Fourier series in the circumferential and axial coordinates to sat-
isfy the boundary conditions at the simply-supported circumferential and axial ends. The pre-
scribed electromechanical functions on lateral boundary are expanded in term of the trigono-
metric Fourier series along the circumferential and axial coordinate. The highly coupled partial
differential equation (P.D.E) are reduced to ordinary differential equations (O.D.E) with vari-
able coefficients by trigonometric function expansion in circumferential and axial directions.
The resulting ordinary differential equation are solved by the Galerkin finite element method.
In this method, we used quadratic element instead of the linear one.

2 Governing equations

The linear constitutive equations of a piezoelectric medium are given by

{σ} = [C] {ε} − [e]T {E}, {D} = [e] {ε} + [η] {E} (1)

where the stress components {σ}, the strain components {ε}, the electric field vector {E} and
the electric displacement vector {D} are given in cylindrical coordinate system (r, θ, z) by

{σ} =
[

σrr σθθ σzz τθz τrz τrθ
]T
, {E} =

[

Er Eθ Ez
]T

(2)

{ε} =
[

εrr εθθ εzz γθz γrz γrθ
]T
, {D} =

[

Dr Dθ Dz

]T
(3)

Here, [C], [e], [η] denote, respectively, the matrices of elastic constants, piezoelectric constants
and dielectric constants of the piezoelastic material. The equation of equilibrium in the absence
of body force and the charge equation of equilibrium of electrostatic in cylindrical coordinate
system are

∂σrr
∂r

+
σrr − σθθ

r
+

1

r

∂τrθ
∂θ

+
∂τrz
∂z

= 0 (4)

∂τrθ
∂r

+
1

r

∂σθθ
∂θ

+
∂τθz
∂z

+ 2
τrθ
r

= 0 (5)

∂τrz
∂r

+
1

r

∂τθz
∂θ

+
∂σzz
∂z

+
τrz
r

= 0 (6)

1

r

∂ r Dr

∂r
+

1

r

∂Dθ

∂θ
+
∂Dz

∂z
= 0 (7)
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We consider a cylindrically orthotropic piezoelectric material with poling in lateral (radial)
direction . The matrices [C], [e] and [η], as given by Tiersten [12], are

[C] =

















C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

















(8)

[e] =





e33 e32 e31 0 0 0
0 0 0 0 0 e24

0 0 0 0 e15 0



 , [η] =





η33 0 0
0 η11 0
0 0 η22





Using relations (8), the constitutive equations (1) can be written as

σrr = C11εrr + C12εθθ + C13εzz − e33Er

σθθ = C12εrr + C22εθθ + C23εzz − e32Er

σzz = C13εrr + C23εθθ + C33εzz − e31Er (9)

τθz = C44γθz

τrz = C55γrz − e15Ez

τrθ = C66γrθ − e24Eθ

and

Dr = e33 εrr + e32 εθ + e31 εz + η33Er

Dθ = e24 γrθ + η22Eθ (10)

Dz = e15γrz + η11Ez

Consider a finite circular cylindrical shell panel of mean radius Rm, thickness H , length L
and angular span α, as shown in Fig.1. Its longitudinal and circumferential ends are simply-
supported and electrically grounded at z = (0, L) and θ = (0, α), respectively. Its lateral
surfaces at r = Ra = Rm − H/2 and r = Rb = Rm + H/2 are subjected to electrical and
traction excitations which vary along the longitudinal (z) and circumferential (θ) directions.

The strains are related to the radial, circumferential and axial displacement components ur,
uθ and uz by

εrr =
∂ur
∂r

, εθθ =
1

r

(

ur +
∂uθ
∂θ

)

, εz =
∂uz
∂z

(11)

γθz =
∂uθ
∂z

+
1

r

∂uz
∂θ

, γrz =
∂uz
∂r

+
∂ur
∂z

, γrθ =
1

r

(

∂ur
∂θ

− uθ + r
∂uθ
∂r

)

The electric field is related to the electrical potential, ψ, of the piezoelectric medium by

Er = −
∂ψ

∂r
, Eθ = −

1

r

∂ψ

∂θ
, Ez = −

∂ψ

∂z
(12)

Using equations (9)-(12), the partial differential equations of motion (i.e. equations (4)-(7) )
can be expressed to Navier form. Thus, the Navier form of equations of motion can be written
in operator form as









L1r L1θ L1z L1ψ

L2r L2θ L2z L2ψ

L3r L3θ L3z L3ψ

L4r L4θ L4z L4ψ























ur
uθ
uz
ψ















=















0
0
0
0















(13)
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where Lij , are given in appendix A, where i = 1, 2, 3, 4 and j = r, θ, z, ψ.
Let the prescribed pressure and electrical potential or electrical displacementDr to cause ac-

tuation strain at the inner and outer surfaces be pa(θ, z), ψa(θ, z) orDa(θ, z) and pb(θ, z), ψb(θ, z)
or Db(θ, z), respectively. Boundary conditions at the axial ends at z = 0, L are :

ur(r, θ, 0) = ur(r, θ, L) = 0

σzz(r, θ, 0) = σzz(r, θ, L) = 0 (14)

τrθ(r, θ, 0) = τrθ(r, θ, L) = 0

ψ(r, θ, 0) = ψ(r, θ, L) = 0

Boundary conditions at the circumferential ends at θ = 0, α are :

ur(r, 0, z) = ur(r, α, z) = 0

σθθ(r, 0, z) = σθθ(r, α, z) = 0 (15)

τrz(r, 0, z) = τrz(r, α, z) = 0

ψ(r, 0, z) = ψ(r, α, z) = 0

In the the lateral surfaces at r = Ra, Rb the boundary conditions are :

σrr(Ra, θ, z) = −pa(θ, z), σrr(Rb, θ, z) = −pb(θ, z)

τrθ(Ra, θ, z) = 0, τrθ(Rb, θ, z) = 0

ψ(Ra, θ, z) = ψa(θ, z), ψ(Rb, θ, z) = ψb(θ, z) (16)

or or

Dr(Ra, θ, z) = Da(θ, z), Dr(Rb, θ, z) = Db(θ, z)

3 General solution of the governing equations

The solution of the boundary value problem, satisfying the boundary conditions (14) and (15),
is taken in the following separable form:

ur =
∞

∑

m=1

∞
∑

n=1

φr(r) sin(bmθ) sin(bnz)

uθ =
∞

∑

m=1

∞
∑

n=1

φθ(r) cos(bmθ) sin(bnz)

uz =
∞

∑

m=1

∞
∑

n=1

φz(r) sin(bmθ) cos(bnz) (17)

ψ =
∞

∑

m=1

∞
∑

n=1

φψ(r) sin(bmθ) sin(bnz)

where bm = mπ/α and bn = nπ/L. Using equations (13) and (17), the partial differential
equations of motion (Navier equations) will be reduced to ordinary differential equations. These
ordinary differential equations can be written in operator form as









L∗
1r L∗

1θ L∗
1z L∗

1ψ

L∗
2r L∗

2θ L∗
2z L∗

2ψ

L∗
3r L∗

3θ L∗
3z L∗

3ψ

L∗
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4θ L∗
4z L∗
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φθ(r)
φz(r)
φψ(r)
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0
0
0















(18)
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where L∗
ij are given in appendix A, where i = 1, 2, 3, 4 and j = r, θ, z, ψ. These system of

equations are solved by the Galerkin finite element method. The quadratic shape functions Ni,
Nj and Nk are considered for φr,φθ, φz and φψ,

φs =
[

Ni Nj Nk

]







φsi
φsj
φsk







, s = r, θ, z, ψ (19)

where Ni, Nj and Nk are :

Ni(r) =
(r − rk) (2 r − rk − ri)

(rk − ri)
2

Nj(r) = 4
(rk − r)(r − ri)

(rk − ri)
2

Nk(r) =
(r − ri) (2 r − rk − ri)

(rk − ri)
2

After multiplying the first of Eq.(18) by Ni and one time part by part integration of the second
order differential terms, the weak form of equation is obtained. By integrating this equation we
obtain an algebraic equation in the form

A1φir + A2φiθ + A3φiz + A4φiψ+ (20)

A5φjr + A6φjθ + A7φjz + A8φjψ+A9φkr + A10φkθ + A11φkz + A12φkψ = F1

By integrating the other ordinary differential equations given by Eq.(18), three equations similar
to equation (20) are obtained. Repeating the above procedure by Nj and Nk instead of Ni, give
another eight equations. Rewriting these twelve equations in form of matrix equations, we
obtain the following finite element equilibrium equation for each non-boundary elements:

[K]e{X}e = {F}e (21)

where [K]12×12 and {F}12×1 are the stiffness and force matrices, respectively, and :

{X}Te = {φri φθi φzi φψi φrj φθj φzj φψj φrk φθk φzk φψk}

Applying the boundary conditions (16) to the first and last nodes in the medium i.e. two lateral
surfaces and using the equations (19), the displacement value of these nodes are given by:

φr1 = C1φr2 + C2φθ2 + C3φz2 + C4φψ2 + C5φr3 + C6φθ3 + C7φz3 + C8φψ3 (22)

φθ1 = C
′

1φr2 + C
′

2φθ2 + C
′

3φz2 + C
′

4φψ2 + C
′

5φr3 + C
′

6φθ3 + C
′

7φz3 + C
′

8φψ3

φz1 = C
′′

1φr2 + C
′′

2φθ2 + C
′′

3φz2 + C
′′

4φψ2 + C
′′

5φr3 + C
′′

6φθ3 + C
′′

7φz3 + C
′′

8φψ3

φψ1 = C
′′′

1 φr2 + C
′′′

2 φθ2 + C
′′′

3 φz2 + C
′′′

4 φψ2 + C
′′′

5 φr3 + C
′′′

6 φθ3 + C
′′′

7 φz3 + C
′′′

8 φψ3

φrML = D1φr(ML−2) +D2φθ(ML−2) +D3φz(ML−2) +D4φψ(ML−2)

+ D5φr(ML−1) +D6φθ(ML−1) +D7φz(ML−1) +D8φψ(ML−1)

φθML = D
′

1φr(ML−2) +D
′

2φθ(ML−2) +D
′

3φz(ML−2) +D
′

4φψ(ML−2)

+ D
′

5φr(ML−1) +D
′

6φθ(ML−1) +D
′

7φz(ML−1) +D
′

8φψ(ML−1)

φzML = D
′′

1φr(ML−2) +D
′′

2φθ(ML−2) +D
′′

3φz(ML−2) +D
′′

4φψ(ML−2) (23)

+ D
′′

5φr(ML−1) +D
′′

6φθ(ML−1) +D
′′

7φz(ML−1) +D
′′

8φψ(ML−1)

φψML = D
′′′

1 φr(ML−2) +D
′′′

2 φθ(ML−2) +D
′′′

3 φz(ML−2) +D
′′′

4 φψ(ML−2)

+ D
′′′

5 φr(ML−1) +D
′′′

6 φθ(ML−1) +D
′′′

7 φz(ML−1) +D
′′′

8 φψ(ML−1)
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where C1, ...C
′′′

8 , D
′

1, ...D
′′′

8 are constants. By substituting equations (22) and (23) into (21), the
finite element equilibrium equations for the first and last elements become :

[K]1{X}1 = {F}1, [K]ML{X}ML = {F}ML (24)

Assembling equations (21) and (24), the global finite element equilibrium equation is obtained
as :

[K] {X} = {F} (25)

Once the finite element equilibrium is established, we can solve this set of algebric equations for
unknown {X} vector. Here, this system of equations is solved using the LinearSolve procedure
of Maple.

4 Numerical results

Here, to verify the results, consider a panel with span angle α = π/3, and L = 4Rm,(Rm

is mean radius of panel) that is polarized in radial direction and subjected to the following
electromechanical loads.

ψa(θ, z) = ψb(θ, z) = 0, pa(θ, z) = 0, pb(θ, z) = p0 sin(πθ/α) sin(πz/L)

The piezoelectric material considered here is elastically orthotropic. The material properties of
piezoelectric are given in the Table (1). The numerical results are expressed in dimensionless

Modulii PZT4 Unit
C11 113 GPa
C22 139 GPa
C33 139 GPa
C44 2.6 GPa
C55 25.6 GPa
C66 25.6 GPa
C12 74.3 GPa
C13 74.3 GPa
C23 77.8 GPa
e15 12.7 C/m2

e24 12.7 C/m2

e31 -5.2 C/m2

e32 -5.2 C/m2

e33 15.1 C/m2

η11 6.46 µF/m
η22 6.46 µF/m
η33 5.62 µF/m

Table 1 Elastic, piezoelectric and dielectric properties of PZT4

form as follows :

(ũr, ũθ, ũz) =
100Y

HS4p0

(ur, uθ, uz) , ψ̃ =
|d|Y

HS4p0

ψ (26)
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σ̃r =
σr
p0

, (σ̃θ, σ̃z) =
(σθ, σz)

S2p0

, (τ̃θz, τ̃rz, τ̃rθ) =
(τθz, τrz, τrθ)

Sp0

(27)

where Y and d denote the Young’s modulus and the piezoelectric coefficient in the radial direc-
tion, respectively, and :

S = Rm/H , H = Rb −Ra , ; Rm = (Ra +Rb) /2 , p0 = 1.

Here, the direct effects of piezoelectric is considered. In this case, panel is subjected to only
mechanical loading. Sinusoidal pressure loading is applied to the outer surface of the panel,
where both its lateral surfaces are held at zero potential. Since the mechanical pressure loading
is sinusoidal, only one term of the Fourier series is needed to be considered. Figures (2)-(10)
illustrate various entities at locations where they are high. The variation across the thickness
[ζ = (r − Rm)/H] of the displacements ũr at (θ = α/2, z = L/2) and ũθ at (θ = 0, z = L/2)
are depicted in figures (2) and (3) for S = 4, respectively. These figures obviously show that
the distribution of ũr across the thickness is parabolic form and variation of ũθ through the
thickness is approximately linear.

The variations across the thickness of electrical potential ψ at (θ = α/2, z = L/2) is shown
in Fig. (4). This figure shows that electrical potential distribution through the thickness is very
close to parabola form.

The distributions across the thickness of σ̃rr, σ̃θθ and σ̃zz at (θ = α/2, z = L/2) are il-
lustrated in Figs. (5)-(7). In these figures we can find that distribution of σ̃rr from the inner
surface up to mean radius Rm is parabolic and between Rm and the outer surface is linear and
distributions of σ̃θθ and σ̃zz are linear. In all of the above figures the boundary conditions are
satisfied.

The distribution of shear stress τ̃θz through the thickness at (θ = 0, z = L) is shown in Fig.
(8).This figure shows that variation through thickness of shear stress τ̃θz is linear.

Similarly, the distribution of shear stress τ̃rz through the thickness at (θ = α/2, z = L)
is shown in Fig. (9). The distribution across the thickness of in-plane shear stress τ̃rθ at (θ =
0, z = L/2) is depicted in Fig. (10). These two last figure show the distribution of shear stresses
τ̃rz and τ̃rθ through the thickness are parabolic.

5 Conclusion

In this work we present a semianalytical solution of a finitely long, simply-supported, or-
thotropic, piezoelectric, radially polarized, circular cylindrical shell panel under pressure, where
panel is closed circuit. The general solution of the governing differential equations is obtained
by the method of separation of variables. The displacements and electric potential are expanded
in the appropriate trigonometric Fourier series in the circumferential and axial coordinates to
satisfy the boundary conditions at the simply-supported circumferential and axial ends. The pre-
scribed electromechanical functions on lateral boundaries are expanded in terms of the trigono-
metric Fourier series in the circumferential and axial coordinates. The highly coupled partial
differential equation (P.D.E) are reduced to ordinary differential equations (O.D.E) with vari-
able coefficients by trigonometric function expansion in circumferential and axial directions.
The resulting ordinary differential equation are solved by the Galerkin finite element method.
In this method, we used the quadratic element instead of the linear ones.

It is always assumed in the analytical analysis (two-dimensional plate and shell theory) of the
piezoelectric structures that the electric potential in the the piezoeletric layers varied linearly and
the displacements change in the form of prescribed functions across its thickness [13]. However,
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it has been shown that the distributions of the mechanical displacement and electric potential of
piezoelectric are very complicated and cannot be treated as pure elastic structures. Therefore,
three-dimensional analysis of piezoelectric structures is recommended even for thin structures.
Since a comprehensive and exact study of active piezoelectric structure is still unavailable, the
present work provides an enhanced insight to the mechanical and electrical behavior of this type
of smart structures. Results of this paper are also useful for assessing approximate analysis.
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Nomenclature

d: piezoelectric coefficient
[e]: piezoelectric constants [C]: the matrices of elastic constants
{D}: and the electric displacement vector
Dr: electrical displacement
{E}: the electric field vector
Y : Young’s modulus

Greek symbols

{σ}: the stress components
{ε}: the strain components
[η]: dielectric constants of the piezoelastic material

Appendix

A.1 P.D.E operator’s

L1r = C11
∂2( )

∂r2
+
C11

r

∂( )

∂r
−
C22

r2
+
C66

r2

∂2( )

∂θ2
+ C55

∂2( )

∂z2

L1θ = −
C22 + C66

r2

∂( )

∂θ
+
C12 + C66

r

∂2( )

∂θ∂r

L1z =
C13 − C23

r

∂( )

∂z
+ (C13 + C55)

∂2( )

∂z∂r

L1ψ = e15
∂2( )

∂z2
+
e24
r2

∂2( )

∂θ2
+
e33 − e32

r

∂( )

∂r
+ e33

∂2( )

∂r2

L2r =
C66 + C22

r2

∂( )

∂θ
+
C12 + C66

r

∂2( )

∂θ∂r

L2θ = C66
∂2( )

∂r2
−
C66

r2
+
C66

r

∂( )

∂r
+
C22

r2

∂2( )

∂θ2
+ C44

∂2( )

∂z2

L2z =
C13 − C23

r

∂( )

∂z
+ (C13 + C55)

∂2( )

∂z∂r

L2ψ = e15
∂2( )

∂z2
+
e24
r2

∂2( )

∂θ2
+
e33 − e32

r

∂( )

∂r
+ e33

∂2( )

∂r2
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L3r =
C23 + C55

r

∂( )

∂z
+ (C13 + C55)

∂2( )

∂z∂r

L3θ =
C23 + C55

r

∂2( )

∂z∂θ
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Figure 1 geometry of panel.
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Figure 2 Distribution of ũr(α/2, L/2) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).
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Figure 3 Distribution of ũθ(0, L/2) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).
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Figure 4 Distribution of ψ̃(α/2, L/2) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).
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Figure 5 Distribution of σ̃rr(α/2, L/2) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).
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Figure 6 Distribution of σ̃θθ(α/2, L/2) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).
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Figure 7 Distribution of σ̃zz(α/2, L/2) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).

-0.4 -0.2 0 0.2 0.4
ζ

-0.4

-0.2

0

0.2

τ~θz

Figure 8 Distribution of τ̃θz(0, L) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).
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Figure 9 Distribution of τ̃rz(α/2, L) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).
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Figure 10 Distribution of τ̃rθ(0, L/2) for panel with S = 4 and outer sinusoidal pressure versus
dimensionless thickness (ζ).


