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1  Introduction 
 
Tail-controlled flight systems are commonly non-minimum phase systems that should be 
equipped with control systems whose task are to provide stability, disturbance attenuation, 
and reference signal tracking, while their aerodynamic coefficients vary over a wide dynamic 
range due to large Mach-altitude fluctuations and due to aerodynamic coefficient uncertainties 
resulting from inaccurate wind-tunnel measurements.   
    It is known that a nonlinear control system is non-minimum phase if its internal or zero 
dynamics are unstable [1]. The non-minimum phase characteristic of a plant restricts direct 
application of nonlinear control techniques such as feedback linearization and sliding mode 
control [2]. In general, exact tracking in causal nonlinear non-minimum phase systems seems 
to be impossible for arbitrary reference signals even in absence of plant uncertainties and 
external disturbances [3]. The problem of tracking a class of reference signals given by a 
known nonlinear exosystem is reduced to solving a first order partial differential algebraic 
equation [4]. Approximate solutions to this equation have been proposed in [5,6] and exact 
tracking of known trajectory via stable nonlinear non-causal inverse in [7].  
    It is common practice, when designing a control system for a non-minimum phase flight 
vehicle, to represent the flight envelope by a grid of Mach-altitude operating points and then 
to perform a linearization of the nonlinear state equations at trim points of the gridded flight 
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Nonlinear Non-minimum Phase Flight 
Vehicle  Control Using Dynamic Sliding 
Manifold 
Design and synthesis of a nonlinear non-minimum phase supersonic flight 
vehicle longitudinal dynamics control for g commands output tracking are 
presented. The non-minimum nature of the resulting input/output pair 
necessitates using a modified switching manifold in sliding mode control 
theory. Dynamic sliding manifold is designed to compensate for unstable 
internal dynamics of the system associated with the coupling between the 
moment generating actuators and the aerodynamic forces on the flight 
vehicle. The employed method is simple to implement in practical 
applications and enables the sliding mode control design to exhibit the 
desired dynamic properties during the entire output-tracking process 
independent of matched perturbations and accommodates to unmatched 
perturbations. Results of simulations are presented to demonstrate the 
performance, robustness, and stability of the considered autopilot.  
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envelope. The plant becomes a differential inclusion under continuously varying flight 
conditions. There are many possible ways of dealing with the control of such linear non-
minimum phase and time varying plants. The classical approach being to design a controller 
for a certain point and then to schedule the controller’s gain to place eigenvalues deep in the 
left half plane and the near real-axis according to a measured or derived parameters that 
represent flight conditions, such as angle of attack or Mach number [8]. In another method, 
H∞ methods are invoked to design a collection of controllers, where for each operating point 
in the flight envelope grid, a controller with a fixed structure result [9]. The ensuing set of 
controllers is then transformed to a single gain scheduled controller by obtaining a least-
square fit of its parameters with respect to angle of attack, or Mach number, etc.For highly 
agile air vehicle, these techniques would result in an extensive number of controller design 
points to be able to cope with the drastically changing dynamic behavior throughout the flight 
envelop. 
    All of the aforementioned methods are linear design techniques that require either exact 
knowledge of system parameters or, alternatively, assumption of some uncertainty model 
such as norm boundedness, thus allowing for robust controller design.  On the other hand, 
sliding mode control may, in principle, be implemented for dynamic systems having only a 
qualitative description and a number of inequality restrictions. A radical departure from the 
conventional sliding mode control design philosophy is that a dynamic sliding manifold is 
utilized to accomplish design objectives beyond the capability of conventional sliding mode 
controllers for non-minimum phase systems [3]. As will be shown in sequel, this approach 
will provide a simple and high-performance controller on nonlinear system designed about a 
fixed operating point using straightforward design procedure. Sliding modes are the primary 
form of operational variable structure systems. A sliding mode is a motion on a discontinuity 
set of a dynamic system and is characterized by a suite of feedback control law and a decision 
rule known as switching function. Such modes are used to maintain the given constraints with 
utmost accuracy. The sliding mode controller is an attractive robust control algorithm due to 
its inherent insensitivity and robustness to plant uncertainties and external disturbances.  
    The nonlinear pitch dynamics of a hypothetical tail-controlled flight vehicle is derived and 
rendered into a linear-time-varying system via classical linearization method in Sec. 2. In 
section 3 a proper set point is utilized to exploit Linear Time Invariant, LTI, system benefits. 
A practical application of dynamic sliding manifold is employed to circumvent restrictive 
performance of conventional sliding manifolds for the non-minimum phase pitch-axis 
dynamics of the air vehicle. The dynamic sliding mode control designed on the basis of the 
LTI system after successful results is employed for the nonlinear system to track commanded 
normal acceleration. The designed controller only requires actuator and tracking error 
variables. Robustness properties of the controller against nonlinearities and time variance are 
demonstrated in Sec. 4. The control robustness against aerodynamics coefficients variation is 
also evaluated.   
 
2  Problem Formulation  
 
The model employed in this analysis is based on the hypothetical tail-controlled air vehicle 
which has been used as a benchmark in a number of recent studies on nonlinear design 
techniques [8,11]. The control objective is to force the air vehicle to track a desired motion 
path generated by the guidance-navigation system as the reference acceleration commands for 
the center of the mass. The problem is first formulated and performance objectives are 
specified. The zero dynamics of the air frame is utilized to demonstrate the non-minimum 
characteristics of the system. The nonlinear pitch dynamics of a hypothetical tail-controlled 
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flight vehicle is then rendered into the Linear Time Varying, LTV, system via classical 
linearization method.  
 
2.1   Dynamic Model of the Flight Airframe 
 
The model assumes constant mass, no roll rate, zero roll angle, no side slip, and no yaw rate. 
Under these assumptions, the longitudinal nonlinear equation of motion is reduced to two 
forces and one moment. Using body axis coordinates, Fig. 1, these equations are 
 

Dx QSCF =                                                                                   (1) 
                                 Nz QSCF =                                                                 (2) 

    My QSdCM =                                                               (3) 
The dynamic pressure is defined as 
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Note that velocity and air density are not assumed to be constant or slow-varying, but a 
standard atmospheric model is assumed in simulation based on previously reported data [12]. 
Aerodynamic polynomials resulting from wind-tunnel measurements are given as [8] 

 
0.3C -D =                                                                             (5) 

 
δdMαc

δdαMβααβαβC

nn

n3N2N1NN Mδα
+=

+++= −

),(

)3/2(||3],,[
                                             (6) 

δdMαc

δdαMβααβαβC

mm

m3M2M1MM Mδα
+=

+++= +−

),(

)3/87(||3],,[
                                        (7)                 

 
The numerical values of the various constant parameters in the dynamic equations (5-7) are 
given in Table 1. Note that all coefficients are dimensionless and all angles are in radians.  
Consequently, the differential equations describing the body motion are 
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The tail-fin actuator dynamics describing the tail deflection is  
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where actuator fin deflection is limited to - 40˚ ≤ δ ≤ 40˚. Table 2 gives the flight vehicle 
constants.  

 
    As shown in the equations of motion, the time-varying aerodynamic parameters contribute 
heavily to the variation of dynamic forces and moments exerted on the vehicle airframe. It is 
assumed here as is often customary in air vehicle autopilot design that the vehicle velocity (or 
Mach number) is constant and the nonlinear state equation associated with Vv is dropped from 
the design model [11]. In this case, the vehicle velocity becomes an independent (external) 
parameter upon which the state dynamics depend.  
    By rewriting equations (8) to (10), it is easy to show that 
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z = . The numerical values of constant parameters are 

listed in Table 3 at an altitude of 6100 m (20,000 ft). 
 
2.2    Performance Objectives 
 
The control objective is to force the air vehicle to track a desired motion path. To this end, the 
guidance-navigation system generates the reference acceleration commands for the center of 
the mass, denoted as az

com. This reference acceleration is compared with the actual normal 
acceleration measured in order to reveal a tracking error. The control problem consists of 
generating a tail deflection δc, which produces the angle of attack that corresponds to the 
required maneuver. Considering the air vehicle flying at an altitude of 6100 m (≈ 20,000 ft); the 
closed-loop system should maintain stability over the operating range specified by [α(t), M(t)] 
such that -30˚ ≤ α(t) ≤ 30˚ and 2 ≤ M(t) ≤ 4. 
 
 
2.3    Input/Output linearization 
 
The longitudinal model of the flight vehicle described by Eq. (15) is a special case of a 
general nonlinear system of the form 
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where f, g, and h are sufficiently smooth functions of ℜ∈x .  
 
    Remark 1: Relative degree, r for nonlinear system (16), is defined as follows.  
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    Utilizing Eq. (17), the relative degree of the system (15) can be obtained as r = 1 < n which 
states that the nonlinear system can only be partially linearized and stability of the system 
depends not only on the linearized system, but also on the stability of the internal dynamics 
(zero dynamics). System of Eqs. (15) can be transformed into the normal form using a 
nonlinear mapping )(xz Φ= such that [1]:  
 

[ ]T
)()()( 21 tηtηtζ=z                                                            

[ ]T)()()()( tqtαta z=xΦ                                               (18)   
 
Corresponding input/output and internal dynamics can be obtained as 
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where )(xjΦ are found such that 0=)(xjgΦL . 
 
    For the system of Eqs. (15), the input/output linearization and internal dynamics result in 
Eq. (20) and Eq. (21), respectively. 
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where Kis are corresponding fixed and known coefficients. The zero dynamics are calculated 
from the internal dynamics by setting the output ζ to be zero. The zero dynamics of Eq. (21) 
may thus be calculated as  
 

)]([)( 151 tηcKtη n=&&                                                          (22) 
 

    Figure 2 illustrates a phase portrait of the zero dynamics, where a saddle point of the zero 
dynamics lies at (0,0). This corresponds to the equilibrium flight mode in which the air vehicle 
flies with a zero angle of attack when at constant velocity and constant altitude. For initial 
conditions starting on the saddle-like trajectories the angle of attack will follow an unbounded 
trajectory causing the air vehicle to turn somersault. Note that the two other equilibria 

0.187,0)(),( −=αα &  and (0.187,0)),( =αα &  correspond to unstable centers which for initial conditions 
starting in the vicinity of these equilibria, angle of attack follows unbounded periodic 
trajectory and the nose of the vehicle is forced to oscillate up and down. Consequently, it is 
deduced from the phase portrait that almost all initial conditions for α  and its variation will 
result in solutions which are unstable. Hence, the conventional sliding mode based on the 
input-output linearization (20) and switching manifold as ζζes −== com  will not be met for any 
bounded control.  

 

2.4   Linear Description of the Flight Vehicle 
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In order to obtain the linear description of the flight airframe Eqs. (15) is linearized about 
equilibrium operating points )( 0MM,α, y = .  
    Simplify the problem by neglecting the actuator dynamics, assuming its bandwidth is 
sufficiently wide. Let  
 

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

==
)(
)(

)(
)(

)(
tq
tα

tξ
tξ

t
2

1ξ                                                       (23) 

 
where )(tξ is the state vector of the reduced-order nonlinear model. Then the state equation is 
given by  
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    Now for a given commanded normal acceleration profile az

com(t), let )(tδ be the nominal tail-
fin deflection and )(tξ  be the nominal state trajectory such that  
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Define the tracking errors by 
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    The obtained system is linear time varying and depends on the angle of attack and Mach 
number at each equilibrium point. It is common practice to choose multiple operating points 
to design a separate controller for each point and obtain the autopilot by integration of 
designed controllers. The method presented in this paper is a straight forward approach that 
requires only a proper design point and obliterates designing a multi-phase controller.  
 
3   Autopilot Design Based on Dynamic Sliding Manifold  
 
The resulted LTV model of the air vehicle can be evaluated at each design point to obtain a 
corresponding LTI model. In this analysis a proper design point will be shown sufficient to 
exhibit desired performance and resulting in a simple and robust autopilot dependant only on 
the actuator state variable and output tracking error. The dynamic sliding manifold is then 
designed based on the well-established LTI design methods and the corresponding autopilot is 
proposed to generate smooth actuator deflection.    
    The obtained LTV model (28) is dependant on the angle of attack and Mach number, 
generally, it is needed to grid the two-dimensional space (α,M) for synthesis purpose through 
a flight envelope. Note that the state-space entries are symmetric in terms of variable α; thus, 
only positive values of α(t) are considered. Grid points can be found by trial and error, or by 
using an expert’s knowledge of operating conditions of the system. Also, fuzzy clustering can 
help designers find proper points [13]. Hence, an LTI model of the system accompanied by 
the actuator dynamics, Eq. (14), can be represented as follows:  
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T][ˆ δxx = and cδ is the control function. A, B, C, and D are constant matrices evaluated for a 

specified design point. (A, B) is a controllable pair; and az
com is a reference output profile. 



 

 

 

                                                                                                          Nonlinear Non-minimum Phase Flight … 
  

 
 

49

Following the approach by Shtessel et al. [10], the aim is to specify a sliding mode control  
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where ),( ,

com ta zxℑ is dynamic sliding manifold acting on actuator states and on output tracking 
error of the system; +

cδ , −
cδ are continuous functions of x and t, to accomplish the motion of 

tracking error e(t)= az
com(t)-az(t) on sliding manifold 0=ℑ  with given eigenstructure and 

providing existence of sliding manifold. Consider the dynamic sliding manifoldℑ  represented 
by 

edecebδaδκ ..... ++++=ℑ+ℑ &&&&&&&&&                                              (39) 
 
where a, b, c, d, κ are constant parameters designed to compensate for unstable internal 
dynamics of the system associated with the coupling between the moment generating 
actuators and the aerodynamic forces on the flight vehicle. 
    Existence condition of sliding mode, || ℑ−<ℑℑ ρ& , must be met in the vicinity of the 
sliding manifold [14]. This is obtained for the system (36) and (38) as follows in Eq. (40) 
with aκ = for the sake of simplicity. 
 

)]sgn(.....[)/1(
)/1(

ℑ+++−=
−+

− µaedecebττa
τa

δ

δδ cc

&&&

&
                               (40) 

 
In order to design constant parameters, it is assumed that the switching surface ℑ  is 
representable as a transfer function  
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where s=d/dt, Q(s) and P(s) are polynomials of s and design parameters of dynamic sliding 
manifold. To obtain the polynomials for sliding manifold structure, the state tracking error 
output is constructed as 
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     Remark 2: The polynomials Q(s), P(s) must be identified to provide the following desired 
features to the non-minimum phase output tracking. 
 

1) The eigenvalues of the closed loop control system must be placed at desired locations:  
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    2) The tracking error must not exhibit any steady state error. 
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This condition can be easily met if type of az

com(t) is known as ∞→t . Provided that the 
polynomials Q(s), P(s) are designed to meet condition (43), and the discontinuous control 
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(38) meets the existence condition, the sliding mode exists in the dynamic sliding manifold 
(39) achieves the desired output tracking of the non-minimum phase system.  
    In aeronautical applications avoidance of any possible excitation of structural modes by the 
high frequency operation of the control is of extreme importance. Although for the case 
studied in this analysis, smooth deflection of the actuator is provided by the low pass 
characteristics of the transfer function of the actuator, but to eliminate the chattering 
phenomena by the control, saturation control operating within a thin boundary layer ε  is 
utilized as 

    ⎟
⎠
⎞

⎜
⎝
⎛ ℑ=
ε

δc sat Ω                                                (45) 

where 0,||Ω >∀+> ιιueq  and  equ  obtained using Eq. (40). 
    In practice, fast tracking performance for abrupt guidance command trajectories is always 
constrained by the physical limit of the actuator rate. A common practice in coping with this 
dilemma is to use a tracking command filter. The filter should greatly reduce the acceleration 
and rate of the abrupt command trajectory [11]. In this analysis a second order filter is utilized 
in simulation process for a sequence of step commands in acceleration as  
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4   Simulation Results 
 
Consider Eq. (36) linearized at the design-point (α=7˚,M=4). This point can be found by trial 
and error or by using fuzzy clustering approach [13].  
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The non-minimum phase transfer function of the system is obtained as  
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The polynomials of dynamic sliding manifold are designed to provide the eigenvalue 
placement as required for characteristic Eq. (43) as well as to nullify steady state error. 
Eigenstructure assignment based on the Deadbeat response criteria, or Integral of Time 
multiplied by the Absolute magnitude of the Error, ITAE, criteria may be utilized. Using the 
deadbeat index, polynomials Q(s) and P(s) are designed as follows: 
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The second order filter (46) is utilized with 10=nω and 7.0=ς  for a sequence of abrupt step 
commands.  
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    Output tracking performance and control behavior for linear system (47) has been 
demonstrated in Fig. 3 for a sequence of step commands in normal acceleration. After 
successful design of dynamic sliding mode control for linearized system, the next step is to 
evaluate the controller’s performance on the nonlinear system. It is expected that the 
performance of the nonlinear closed-loop system will agree with that of the linearized system 
due to the robustness properties of the sliding mode control against nonlinearities and time 
variances. Response az(t) of the nonlinear closed system, with the controller designed to a 
series of step and sinusoidal commands az

com, and the corresponding variations in the angle of 
the attack, Mach number, pitch rate, altitude, and actuator tail deflection are shown in Fig. 4 
and 5, respectively.  
    Figure 6, shows step responses for the four possible combinations of ± 30% variation in the 
two aerodynamic coefficients cn(α,M) and cm(α,M), indicating excellent robustness of the closed 
loop system against perturbations and parameter variations.  
     Although the autopilot has been designed for altitude of 6,100m (≈20,000 ft), but in reality the 
air vehicle has to operate over a wide range of altitudes. To demonstrate the autopilot ability 
to face such situations the vehicle operation is checked for altitudes of approximately, 7,500m 
and 3,500m as well and the resulted performance demonstrated in Fig. 7.  
 
5    Conclusion  
 
In the non-minimum phase nonlinear systems, namely systems with unstable zero dynamics, 
perfect tracking via direct inversion of the input/output dynamics cannot be achieved. 
Accordingly, existence condition of conventional sliding modes cannot be met for any 
bounded control completely and the system experiences instability due to unstable internal 
dynamics. To circumvent this problem for the flight vehicle considered, the dynamic sliding 
manifold is utilized and its excellent performance demonstrated by simulation results for 
longitudinal pitch dynamics. The simple and straightforward design procedure, together with 
the encouraging robustness against nonlinearities and parameter variations resulted from 
simulation results; invite further application of this approach. It has to be stressed that the 
employed controller requires only actuator state variable and normal acceleration output 
tracking error, whose measurements are accomplished using simple instrumentations.  
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Nomenclature  
 
az

com commanded normal acceleration, g 
az actual normal acceleration, g 
d reference diameter, m 
g gravity, m/s2 
h altitude, m 
m vehicle mass, kg 
q pitch rate, rad/s 
vs speed of sound, m/s 

CD 
axial force dimensionless aerodynamic  
polynomial 

CN normal force dimensionless aerodynamic polynomial 
CM pitching moment dimensionless aerodynamic polynomial 
Fx axial force, N 
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Fz normal force, N 
Iy moment of inertia, kg m2 
Kα, Kq, Kz vehicle constant parameters 
M Mach number 
My pitching moment, N.m 
Po static pressure, N/m2 
Q dynamic pressure, kg/m s2 
S reference surface area, m2 
Vv speed of vehicle, m/s 

Greek Symobls 

α angle of attack, rad 
β1N, β2N, β3N angle of attack component of normal force dimensionless aerodynamic 

polynomial coefficients 
β1M, β2M, β3M angle of attack component of pitching moment dimensionless aerodynamic   

polynomial coefficients 
θ pitch angle, rad 
γ flight path angle, rad 
δ actual tail fin deflection, rad 
δc commanded tail fin deflection, rad 
ρ air density, kg/m3 
τa tail actuator time constant, sec 
ξ1, ξ2 state variables for α and q 
η1, η2  internal dynamics variables 
ζ output variable in normal form coordinates 
Ω control gain 
σ dynamic operator  
ℑ  dynamic sliding manifold 
 
 
 
 

 
Tables 
 

Table 1.  Aerodynamic polynomial coefficients 
β1N = 19.3734 β1M = 40.4396 
β2N = 31.0225 β2M = -64.0147 
β3N = -9.717 β2M = 2.9221 
 dn  = -1.9481  dm  = -11.8029 

 
 

Table 2.  Flight vehicle constants 
Symbol                                   Value 
Iy 247.43662 kg m2 
d 0.2286 m 
S 0.0409 m2

m    204.108 kg 
τa 1/150 s 
g 9.81 m/s2 
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Table 3.  Constant parameters at an altitude of 6100 m 
Symbol                        Approximate value 
Kα    0.020691 s-1 
Kq 1.2326 s-2 
Kz 6.5363 m s-2 

 
 
Figures 

 
 

 
Figure 1 Airframe and dynamic variables 

 
 

 
Figure 2  Phase portrait of zero dynamics 
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Figure 3 Linear system response to a sequence of step commands in acceleration 

 

 
Figure 4 Nonlinear system response to a sequence of step commands in acceleration 
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Figure 5 nonlinear system responses to a sinusoidal command in acceleration 

 
 

 
Figure 6 Nonlinear system response to a sequence of step commands in acceleration with perturbations in 

aerodynamic coefficients 
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Figure 7 Nonlinear system response to a sequence of step commands in acceleration with different initial 

altitudes 
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 دهيچک
 ينـه فـاز مـافوق صـوت بـرا     يناکم يرخط ـيک موشـک غ ي ـ يک طـول ي ـناميکنتـرل د  ين مقاله طراح ـيدر ا 
ــرد ــ يابي ــتاب خروج ــد اار يش ــد ش ــه خواه ــار ناکم. ئ ــاز وروديرفت ــه ف ــ‐ين ــرورت  يخروج ــتفاده از ض اس
بـدين منظـور از منيفولـد    . شـي مطـرح مـي سـازد    ي را در تئـوري کنتـرل مـد لغز   متفـاوت  يچيفولد سوئيمن

ــين       ــگ ب ــأ آن کوپلين ــه منش ــدار موشــک ک ــي ناپاي ــک داخل ــران دينامي ــور جب ــاميکي بمنظ ــي دين لغزش
بکـار گيـري   . عملگرهاي ايجـاد کننـده ممـان و نيروهـاي آيرودينـاميکي مـي باشـد، اسـتفاده خواهـد شـد          

ادر مـي سـازد تـا رفتـار دينـاميکي مطلـوب       روش ارائه شده در عمل ساده بـوده و کنتـرل مـد لغزشـي را ق ـ    
در ادامـه نتـايج   . را در طول زمـان عملکـرد موشـک مسـتقل از اغتشاشـات سـازگار و ناسـازگار فـراهم آورد        

شبيه سازي براي چگـونگي عملکـرد، مقـاوم بـودن سيسـتم و پايـداري اتوپـايلوت مـورد نظـر ارائـه خواهـد            
  . شد

 
  


