
 

 

  

 

 
Keywords: fuzzy change detection, persistent excitation, vehicle navigation, least square, online 
calibration 
 
1  Introduction 
 
Using a three-axis magnetometers system together with a low-cost micro electro-mechanical 
attitude system, this paper develops a technique to determine heading of a vehicle in vicinity of 
the earth. Three-axis magnetometers system is commonly used to determine the attitude-heding 
of a vehicle. However, it should be coupled with gyros or three-axis strapdown accelerometers as 
an attitude heading reference system [1]. An important issue to the attitude accuracy obtained 
using a three-axis magnetometers system is the precision of its calibration parameters including 
biases, scale-factors and non-orthogonal misalignments, which may be determined using attitude-
dependent or -independent methods [2-4]. On the other hand, unlike aerospace applications, in 
ground vehicles, magnetometers are commonly affected by considerable soft- and hard-iron 
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Fuzzy Variable-Length Sliding Window 
Blockwise Least Square Algorithm with 
Application to Vehicle Heading 
Determination 
In ground vehicles, three-axis magnetometers may be corrupted by both soft- 
and hard-iron disturbances. Therefore, it may not be possible to achieve 
qualified headings without online calibration of this magnetic system. First 
contribution of this paper is focused on improving the order of persistent 
excitation of the squared signal matrix through incorporation of a direction 
cosine matrix in estimation model. As the main contribution, a fuzzy change 
detection scheme for adjusting the length of data sliding window of blockwise 
least square (BLS) algorithms is presented in the framework of on-line 
estimation of system parameters under both abrupt and gradual changes. This 
is called fuzzy variable-length sliding window (FVLSW) BLS. Two change 
detection indices including generalized likelihood ratio and averaged 
parameter estimation errors together with their changes are considered as 
inputs of the fuzzy system. The defuzzified outputs consists a forgetting factor 
in order to place more emphasis on the recent data, and two adjusted lengths 
of data history windows.Simulations and real experiments revealed that the 
proposed approach has superior performance with respect to the latest 
variable-length sliding window (VLSW) BLS estimation algorithm. The 
superiority is more significant when the measurement noise power is 
substantial. 
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magnetic disturbances. These disturbances are generated due to steel made parts of the vehicle, 
its electrical devices, and other magnetic anomalies which may come from the environmental 
effects. However, these time-varying disturbance parameters should be considered and online 
calibration procedures (in addition to off-line calibrations) are required before correct vehicle 
heading can be determined to satisfy requirements of the vehicle navigation application [5]. It 
should be noted that during off-line calibration, there is no restrictions on rotating movements of 
three-axis magnetometers, which should be done to achieve input and output data for calibration. 
Therefore, input signals with a suitable order of persistent excitation, which are required for the 
purpose of convergence of the estimation/calibration algorithms, may be obtained. Since in 
online estimation/ calibration problem the input signals of regression model of the 
magnetometers system depend on the vehicle maneuvers, therefore, there is no guarantee that the 
input signals may generate suitable order of persistent excitation for squared regression (signal) 
matrix. 
     In the line of the other contribution of this paper, it is shown that using a direction cosine 
matrix to transform measurement vector of a strapdown system leads to a squared regression 
matrix together with high order of persistent excitation, in which many sine and cosine terms that 
act on the new inputs, are contributed in the appearance of new estimation models. Therefore, a 
new regression model of the vehicle heading reference system is generated to improve the 
convergence of parameter estimate in real-time applications. 
     Least square (LS) family of estimation algorithms, which may be formulated in blockwise or 
recursive forms, have shown a good tracking property because of the linear optimal features 
resulting from minimizing sum of the squared prediction errors [6]. For linear time-invariant 
systems, it has been demonstrated that the performance of blockwise least square (BLS) is always 
superior to that of the recursive LS [7]. In online estimation of time-varying system parameters, 
standard BLS may no longer be suitable due to its inefficiency in discarding old data. To deal 
with this limitation, sliding window BLS approach is proposed [7]. 
     Two possible solutions for detecting a change of an unknown parameter are the weighted 
cumulative sum and generalized likelihood ratio [8]. The first is essentially a moving average 
method and the second scheme uses widely accepted generalized likelihood ratio instead of 
maximum likelihood. As the main contribution of this paper, a fuzzy change detection 
mechanism is designed for considering changes of disturbance parameters in adjusting data 
history length of adaptive BLS estimation algorithm. This fuzzy decision making system results 
in the enhancement of the estimation accuracy of BLS algorithm due to simultaneously using two 
independent change detection indices including averaged parameter estimation error and 
generalized likelihood ratio. When the measurement noise power is substantial, the performance 
of this new fuzzy change detection system is superior to that of non-fuzzy scheme. By extending 
recently developed variable-length BLS algorithms [9, 10], a new intelligent fuzzy variable-
length sliding window (FVLSW) BLS estimator is designed to online identification of time-
varying systems. 
     Performances of the proposed FVLSW BLS and recently developed variable-length sliding 
window (VLSW) BLS estimation algorithms are evaluated using both simulation and real test 
data of a low-cost heading reference system, which is strapped on a ride vehicle. The real tests 
data are collected during a wide range of the vehicle maneuvers in mountain roads, highways, 
and level streets of the city. Online estimation of six calibration/disturbance parameters may be 
possible only by using new estimation model of the heading reference system in BLS algorithms. 
Computer simulations and real experiments revealed that the tracking capability of proposed 
FVLSW BLS estimator on accurate estimation of time-varying magnetic parameters is 
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significantly better than that of the recent VLSW BLS algorithm [7]. Rest of the paper is 
organized follows: Section 2 describes the heading reference system modeling technique. Section 
3 presents online parameter estimation algorithms and properties of the proposed regression 
model. In Section 4, the idea of fuzzy change detection scheme is presented. In section 5, in 
addition to simulations, performance of the proposed techniques is evaluated on a real heading 
reference system; and finally, Section 6 is devoted to concluding remarks. 
 
2  Heading reference system 
 
In general, the aim of attitude heading reference system is to obtain sufficient information for 
vector transformation from vehicle body coordinates to a pre-determined reference frame [11]. In 
this paper, heading reference system is considered to determine the magnetic heading of a vehicle 
using measurements made by three-axis magnetometers. Correct outputs of the three-axis 
magnetometers system should be projection of the earth’s magnetic field vector along vehicle 
body axes. It has been assumed that the attitude including roll and pitch angles is determined with 
an acceptable accuracy (about 1°) using an aided low-cost inertial navigation system. 
      Even after calibration of the three-axis magnetometers system, remarkable uncertainties in its 
parameters including biases and scale factors may commonly exist. Therefore, norm of the three-
axis magnetometers outputs that should be approximately a fixed value in a specified 
geographical region is together with serious gradual or abrupt changes. In this paper, online 
estimation of three-axis magnetometers system biases and scale factors is triggered for 
considering local hard- and soft-iron magnetic effects on the heading reference system 
algorithms. The following measurement model has been frequently examined for three-axis 
magnetometers calibration in literatures [2-4],  
 

3*3ˆ ( )b b n
k k n k km I D C m B v= + + + , (1)

 
where ˆ b

km  includes ˆ xm , ˆ ym  and ˆ zm  that stand for magnetic fields effects measured by the 

three-axis magnetometers along vehicle body axes at time kt . nm  is the corresponding value of 
the geomagnetic field with respect to north-east-down coordinate system, b

nC  stands for the 
attitude and heading representation in the form of direction cosine matrix, kD  is an unknown 
matrix of scale factors (the diagonal elements are corresponding to soft-iron magnetic 
disturbances), kB  is the bias vector, and kv  is the measurement noise vector that is assumed to 
be a zero-mean Gaussian process. Now, two following nonlinear models may be considered for 
online calibration of the three-axis magnetometers system. The first is an attitude-independent 
observation model, which is inspired from the fact that the undistorted measurement vector by 
the three-axis magnetometers should trace a spherical surface during travel on the earth [4]. This 
sphere corresponds to the loci of the earth’s magnetic field vector in the space. This sphere is 
shifted from the origin by applying biases, deformed by applying scale factors and finally 
corrupted by wide band sensor noises. The goal of the online calibration problem is to estimate D 
and B. An attitude-independent observation may be obtained as follows: 
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(2)

 
 where the auxiliary variables 1K  through 4K  are nonlinear functions of hard iron bias vector kB  
( xB , yB , zB ) and soft iron scale factors ( xγ , yγ  and zγ ) which are diagonal elements of matrix 
D. In regression (signal) matrix of the aforementioned model (2), only measurements of the 
three-axis magnetometers exist. Therefore, due to slow variation of the vehicle attitude in 
required short-time intervals for online calibration updating, measurements by the three-axis 
magnetometers system may not be sufficiently rich to obtain a successful estimate of unknown 
parameters. On the other hand, during online calibration of a real three-axis magnetometers 
system, using test data and regression model of (2), expected divergence of estimated parameters 
is resulted. However, weak capability of the squared signal (regression) matrix of model (2) to 
have a high order of persistent excitation reveals necessity of new estimation model whose 
squared signal matrix should possess a high order of persistent excitation. This kind of regression 
model can be appropriate for online calibration of the three-axis magnetometers system. The 
second and new model of the three-axis magnetometers system is based on the fact that the 
horizontal and vertical components of the earth’s magnetic field vector are not affected by 
heading angle ψ . Therefore, transformation of the measurements vector from body coordinate 
system to a local level frame is the base of new modeling technique, i.e., 
 

( )
( )
( )

1

10
x x x x

y y y y

Dz z z

m B MC S S C S
C S m B M

S S C C C Mm B

γϑ φ ϑ φ ϑ
φ φ γ

ϑ φ ϑ φ ϑ γ

⎡ ⎤+ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥− + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ + ⎣ ⎦⎢ ⎥⎣ ⎦

, 

 
(3)

 
where S and C stand for sine and cosine, respectively. φ  and ϑ  are roll and pitch angles, 
respectively. 

1xM , 
1yM  and DM  are projected components of the earth’s magnetic field vector 

in new local level frame (X1Y1D) which should be coincide to north-east-down frame trough 
rotation by the heading angle ψ  along local normal axis. Therefore, vertical component of the 
earth’s magnetic field vector ( DM ) in both of north-east-down and X1Y1D frames is the same 
and is independent ofψ . In the mean time, the projection of the earth’s magnetic field vector in 
local horizon can be found from world magnetic distribution models [3]. Therefore, two 
following regression models could be considered for online estimation of the calibration 
parameters, 
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(5) 
  
  
  

where HM  consists horizontal components of the earth’s magnetic field vector ( 1xM  and 1yM ).  
     In practical applications of heading reference system, providing signal/regression matrices 
using aforementioned modeling techniques leads to satisfaction of Lemma 1, which will be stated 
in the next section for achieving guaranteed convergence of parameter estimation algorithm. 
However, the components of magnetic field vector in local horizon ( 1xM  and 1yM ) could not be 
known in the system under consideration. Therefore, we only focused on using the squared norm 
of HM  and DM  for modeling the three-axis magnetometers calibration problem. 
 
3  Estimation of time-varying parameters 
 
The following discrete time regression model with a white Gaussian noise kv  is considered to 
formulate the parameter estimation problem: 
 

( )k k k ky H v kθ γ= + + , (6)
~ (0, )kv N R , 

 
(7)

where R  is a diagonal covariance matrix of noise vector kv , θ  is an n-dimensional vector of 
parameters and ky  is an r-dimensional measurement vector (r>n). kH  is the regression matrix 
of rank n and γ  is a probability change in parameter or in measurement noise vector. In this 
paper, the developed fuzzy algorithm does not rely on any particular form of parameter changes. 
However, a change at unknown time ak  is regarded as [7] 
 

0 ,k ak kθ θ= < , (8)

0 , 0k ak kθ θ θ θ= + ∆ ≥ ∆ ≠ . 
 

(9)

     Equations (8) and (9) show the most general form of changes in vectorθ , such that they may 
count for most of the change profiles which are described in refereed literatures [8]. 
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Maximum likelihood estimate is coincide with the LS estimation under linear and Gaussian 
assumptions, and they result in the following estimate using all observations up to current 
instant, k : 

( ) ( )11 1ˆ ˆT T
k kH R H H R Y Hθ θ

−− −= − . 

 

(10)

3.1   Online blockwise least square 
 
Estimation of time-varying parameters was investigated in many variants of LS algorithms in 
preceding literatures [9, 10]. The aim is to develop a strategy for adjusting the length of sliding 
window to achieve the best performance of the estimation algorithm in both transient and steady 
state intervals, which in turn require fast and reliable change detection mechanisms. 
In this paper, the following cost function involving the noise covariance matrix is used for online 
estimation of parameters of the regression model (11) with additive changes, 
 

( ) ( )1k k k ky k H vθ θ−= + ∆ + , (11)

( ) 1 2
,

1
, ( )

k

k

k
k j

N j j j k k
j k N

J k r y Hθ λ θ− −

= − +

= −∑  
(12)

 
where kN , 0<λ <1 and ,j jr s respectively stand for the length of data history sliding window, a 
forgetting factor in order to place more emphasize on recent data and elements of noise 
covariance matrix R . Minimizing this cost function for known θ∆  leads to the following 
estimate of parameters, 
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1 1
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(13)

and for unknown θ∆ , 

( )
1

1 1
, ,

1 1

ˆ ,
k

k

k k
k j T k j

N j j k k j j k j
j k N j k i

k r H H r H yθ θ λ λ
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− − − −

= − + = − +

⎡ ⎤ ⎡ ⎤
∆ = ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
∑ ∑  

 

 
(14)

    Convergence of the estimations in equations (10), (13) and (14) is strictly dependent on order 
of persistent excitation of the squared regression matrix T

k kH H . Since generated input signals in 
online estimation are dependent on the vehicle trajectories and maneuvers, structure of the 
regression matrix that can be determined by designer is a most effective factor on increasing the 
order of persistent excitation. In this paper, a new strategy is proposed to improve the order of 
persistent excitation of the squared regression matrix when the input signals are not sufficiently 
rich. This significant idea is based on the fact that the direction cosine matrix for transforming a 
measurement vector from body to a reference coordinate system possesses many sinusoidal terms 
of attitude angles as new inputs. The following lemma plays an important role on the feasibility 
of online estimation of time-varying parameters in this paper. 
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Lemma 1. Transforming the measurement vector of a system from body coordinates to a 
reference frame generates new regression model that can improve the convergence of LS family 
estimators. 
Proof, Consider the matrix form of the weighted least square (14) as, 
 

11 1ˆ( ) ( )T Tk H R H H R y kθ
−− −⎡ ⎤ ⎡ ⎤= Λ Λ⎣ ⎦ ⎣ ⎦  

 

(15)

where, 1R − Λ  is a nonsingular weighting matrix because it consists two nonsingular matrices 
including noise covariance and user defined forgetting factors. Therefore, unique solution of (15) 
requires that TH H  be a nonsingular matrix. This is the well-known persistent excitation 
condition of the squared form of the regression matrix H [12]. Before vector transformation, the 
elements of H are composed of only the measurements in body coordinates as, ( )H f u= . 
Now, consider the following direction cosine matrix to transform vectors from body- to 
navigation- coordinates system, 
 

C C C S S S C S S C S C
DCM C S C C S S S S C C S S

S S C C C

ϑ ψ φ ψ φ ϑ ψ φ ψ φ ϑ ψ
ϑ ψ φ ψ φ ϑ ψ φ ψ φ ϑ ψ
ϑ φ ϑ φ ϑ

− + +⎡ ⎤
⎢ ⎥= + − +⎢ ⎥
⎢ ⎥−⎣ ⎦

                                        

 
By applying this direction cosine matrix for transforming the input vector u , which is measured in 
body coordinates system to a reference frame, the new regression matrix can be considered as, 

( ) ( , sin , sin , sin , cos , cos , cos )H k f u φ ϑ ψ φ ϑ ψ= . 
Since elements of H  after transformation consist many sine and cosine terms, which act on the 
new inputs in addition to principal input vector u, the capability of new regression system to 
being a high order of persistent excitation is evidently superior to that of the system ( )H f u= . 
Therefore, regarding time-varying φ , ϑ  and ψ  inputs, the following persistent excitation matrix 

nC  could have full rank of order 2r  where r is the number of sinusoidal functions of rotation 
angles in H  [12], 
 

(0) (1) . . . ( 1)
(1) (0) . . . ( 2)

( 1) ( 2) . . . (0)

n

c c c n
c c c n

C

c n c n c

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥− −⎣ ⎦

M
                                                                                   

Therefore, when the components of vector u are not persistently excited inputs; the new 
regression system leads to a squared signal/regression matrix with higher order of persistent 
excitation, which in turn results in accurate estimation of parameters. This completes the proof. 
The above lemma shows that how the order of persistent excitation of squared signal matrix may 
be improved by transforming system measurement vector to a reference frame in addition to rich 
input signals. Therefore, using new regression model can increase the accuracy of estimated 
parameters and causes to fast convergence of the estimation algorithms. 
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For example, according to the aforementioned nC  matrix, appearance of each sinusoid of the 
pitch angle in the form of atϑ =  leads to a squared matrix with 2 order of persistent excitation 

where a is a fixed value. This means that for ( ) sinh t at= , 2

1 cos
cos 1

a
C

a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

Remark 1. Small forgetting factor may decline the order of persistent excitation of ill-conditioned 
regression matrices. 
Remark 2. Because of small noise covariance matrix, using more reliable measurement sensors 
could prevent divergence of the estimation algorithm especially when the original regression is ill 
conditioned. 
In the recent paper [13], dynamical model ( ( , )x f x u=& ) of a wheeled mobile robot is changed 
from body coordinates to a global one using both linear and non-holonomic constraints. 
Nonlinear controller implementation based on new dynamics leads to accurate trajectory tracking 
and perfect compensation for initial off-track conditions. 
 
4  Change detection 
 
In adaptive BLS estimation, the length of sliding window is adjusted by considering detected 
changes of parameters. Many change detection schemes are developed to distinguish both abrupt 
and gradual changes [8, 14]. However, combined change detection schemes using output 
prediction error and averaged parameter estimation error are possible [8]. By considering the 
following output prediction error with the sliding window of length ( )L k , occurrence of a 
parameter change will be considered as follows 

( )
1

1 ( ) ( )
e

k
eT

e
i k Me e

d k e i e i
M

ρ
ρ= − +

>⎧⎪= ⎨≤⎪⎩
∑ , 

(16)

( ) ( ) 1 ( ) 1
ˆk k

k L k k L ke k y H θ(k)− + − += − , (17)

where eM  is the length of recent data to update change detection index ed , and θ̂  is the vector 
of estimated parameters. Once this index exceeds an upper pre-set threshold eρ , change process 
will start. On the other hand, if this index goes less than the lower threshold

e
ρ , change process 

will stop. Similarly, the following averaged parameter estimate in a sliding window of length 
M θ  may be used to detect change of parameters: 

1 ˆ( ) ( )
k

M L
j k M

k j
M

θ

θ
θ

θ θ
= −

= ∑ . 
(18)

A decision for parameter change (or its leakage) can also be made if the detection index (18) 
exceeds or goes less than the pre-set thresholds [7]. 
In this paper, a fuzzy decision making system is designed for simultaneously considering two 
efficient change detection indices including generalized likelihood ratio and averaged parameter 
estimation error. In the mean time, two independent functions of change rate of these indices are 
considered in the fuzzy change detection system. The importance of innovation vector as a tool 
for detecting change of parameters comes from the computation of the likelihood ratio. The 
widely accepted generalized likelihood ratio for the regression model can now be written as [8]: 
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( )
( )

k
θ ∆θ ii j

k k1 j k
θ ii j

sup Ρ y θ
g max ln

Ρ y θ
=

≤ ≤
=

=
∏
∏ o

, 
 

(19)

 
where kg  is decision function of the generalized likelihood ratio, ( )iP yθ∆  and ( )iP yθo

 are the 
probability distribution functions of iy  after and before change occurrence, respectively. By 
considering the factorized covariance matrix, TR A A= , the simplified form of kg  is obtained 
after some mathematical manipulations as  
 

( ) ( ) ( )21
0 01

1 1max max
2 2

k k k
k j j jj k

k j k jg y H R y Hθ θ χ−

≤ ≤

− + − +
= − Λ − = , 

(20)

( )2 1 1 1 1 1
1 ( ( ) )

k

k T T T T T T
k N k k k r ke R e y A I A H H R H H A A yχ − − − − − − −
− + = Λ = − Λ , 

 

(21)

where rI  is an identity matrix of order r . 
 
4.1   Fuzzy change detection 
 
The main contribution of this paper is devoted to developing a fuzzy change detection system for 
combination of generalized likelihood ratio and averaged parameter estimation error indices. The 
fuzzy change detection scheme may achieves more tracking capability of parameter estimate 
under both abrupt and gradual changes. The basic idea behind this intelligent change detection 
scheme, which is merely based on fuzzy if-then rules, is to cumulate advantages of both the 
innovation based and parameter estimate based methods conveniently. In addition, the fuzzy 
combination is more reliable because it turns away the probability drawbacks of each individual 
change detection scheme by extending them over. 
     Although it seems that in fuzzy scheme, more computing cost must be paid due to more input 
variables of this change detection system compared to that of the recent non-fuzzy algorithms, it 
should be noted that: (1) the fuzzy if-then rules are very simple, evident and easy to be adjusted 
by considering particular application issues; (2) the fuzzy change detection system has 
continuous outputs including the length of sliding windows for updating BLS estimations and the 
input functions of the fuzzy inference engine; (3) this new scheme is more robust against noises 
because of noise filtering capability of determined fuzzy membership functions; and finally, (4) 
in the fuzzy system, systematically tuned if-then rules are used instead of pre-set thresholds for 
detecting change points. 
     Fuzzy change detection system incorporates generalized likelihood ratio, averaged parameter 
estimation error and two other defined functions of their change rates to obtain superior 
performance in adjusting the length of sliding windows and the forgetting factor. Intelligently 
adjusted sliding windows and forgetting matrix resulted in an efficient BLS algorithm for 
estimation of time-varying parameters. Two first inputs of this fuzzy change-detecting system 
are: (1) decision function of the generalized likelihood ratio which was defined before in (20); (2) 
the following decision index of averaged parameter estimation error, which is the difference of 
averaged parameter estimates in two consecutive intervals of length tN : 
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i i Nt
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Nθ θ θ

−

= =

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
∑ ∑  

 

 
(22)

Third input to the fuzzy change detection system is difference of the averaged decision function 
of generalized likelihood ratios, which is defined below: 
 

1 2 1

0

t t

t

N N

k k i k i
i i N

g g g
− −

− −
= =

∇ = −∑ ∑  

 

(23)

Finally, change rate of the averaged parameter estimation error (22) is the fourth input to the 
fuzzy system as 
 

1k k kg g gθ θ θ −∇ = −  
 

(24)

     In fuzzy system, the reciprocal condition number estimate of matrix 1TH R H− Λ  may be 
considered as an optional input to enlarge the length of sliding windows when the squared signal 
matrix has a weak order of persistent excitation. Although this optional input helps to decrease 
the singularity probability of the BLS estimation algorithm, it in turn may result in a less 
estimation accuracy in addition to more computational cost. In this paper, the trade-off between 
accuracy and convergence of estimation algorithm may be removed due to generating a 
persistently excited regression model. However, profound effects of this new modeling technique 
on performance of the BLS parameter estimation algorithm will be shown through simulations 
and real tests of a vehicle. 
     Fuzzy change detection system uses a combination of several change detection indices to 
reveal both abrupt and gradual changes of parameters in a good quality. This fuzzy system, 
because of its continuous outputs is significantly superior to the recent non-fuzzy change 
detection systems developed to specify start- and stop-points of a change. In the meantime, the 
fuzzy approach is comprehensive and is designed in such a way to use all of the four input 
functions in parallel. 
    The fuzzy change detection system has a clear and simple structure as follows: 

( ), , ,k k k kN f g g g gθ θ= ∇ ∇ , (25)

where N , which is the defuzzified output vector of fuzzy system, includes: kN , the length of 
sliding window of BLS estimator; tN , the length of innovation data history to update both kg  
and kgθ ; and λ , the forgetting factor parameter for weighting the recent data. 
The rules of fuzzy change detector are obtained after some deep investigation on the system 
dynamics and trial-and-error tunings using both simulated and experimentally tested heading 
reference system of a vehicle. The fuzzy rules are simple and have a systematic tuning approach 
in comparison to rules of non-fuzzy mixed change detectors. The rules of fuzzy system are in the 
following generic form: 
 If kg  is 1

lA  and kg∇  is 2
lA  and kgθ  is 3

lA  and kgθ∇  is 4
lA , then kN  is 1

lB , tN  is 2
lB , λ  is 

3
lB ; where, l

iA  ( 1, 2, 3, 4i = ) and l
jB  ( 1, 2, 3j = ) are fuzzy sets for linguistic input and output 

variables, respectively. 
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Here, 16 fuzzy if-then rules ( 16M = ) are constructed to deal with simple membership functions 
which are defined for inputs and outputs of fuzzy system. The response of fuzzy system 
corresponding to inputs 1A ′ , 2A ′ , 3A ′ , 4A ′  is B ′  with the following membership function, 

( ) 1 2 3 4

1 2 3 4

16

1

min{ ( ) ( ) ( ) ( ),
max sup

( ) ( ) ( ) ( ), ( )}l l l l l

k k k kA A A A

l
k k k kA A A A B

g g g g
NB g g g g N

θ θ

θ θ

µ µ µ µ
µ

µ µ µ µ µ
′ ′ ′ ′

=

⎡ ⎤∇ ∇⎛ ⎞
⎢ ⎥⎜ ⎟=′ ⎢ ⎥⎜ ⎟∇ ∇⎝ ⎠⎣ ⎦

, 
(26) 

 

 
Defuzzified output vector, which includes the length of variable sliding windows and forgetting 
factor, is given below: 

'

'

16

1
16

1

( )
.

( )

j j
B

j

j
B

j

N N
N

N

µ

µ

=∗

=

=
∑

∑
 

 
(27)

The fuzzy inference engine consists of the following operations,  
- Individual-rule based inference with union combination, 
- Mamdani’s minimum implication, 
- Algebraic product for all the t-norm operators, 
- Max for all the s-norm operators.  
Final tuning of fuzzy membership functions, which are plotted in Figures 1, are done by 
considering variations of the fuzzy system outputs against variations of its inputs ( kg , kg∇ , 

k
gθ  

and 
k

gθ∇ ) during tests of the heading reference system on a vehicle. The fuzzy rules, after final 

tuning, are gathered in the search Table 1, where S , M and L  stand for small, medium and 
large, respectively. 
 
5  Simulations and experimental tests 
 
In this section, the performance of the BLS estimation algorithm together with both proposed 
FVLSW and recently developed VLSW change detectors are evaluated using simulations and 
real tests of a vehicle. The magnetic heading reference system is simulated after reviewing test 
data that are obtained from a strapped Vitans-type attitude-heading reference system on a vehicle 
[15]. One hundred runs of magnetic heading system are executed to provide a Monte-Carlo type 
simulation. 
      The new regression model of heading reference system (4) is applied in both of FVLSW- and 
non-fuzzy VLSW- BLS algorithms to online estimation of disturbance/calibration parameters. 
The capability and performance of this new modeling scheme in parameter estimate tracking is 
very significant in comparison to that of the calibration model (2). In other words, using this new 
model results in expected convergence and accuracy of estimate parameters under both abrupt 
and gradual changes. On the other hand, implementing the BLS estimation algorithm using 
calibration model (2) caused to a diverged online estimate unlike its satisfactory performance in 
offline calibration of the three-axis magnetometers system. As seen in Figures 2 through 8 
(subfigures a  and b  are concerned to FVLSW and VLSW respectively), tracking capability of 
new FVLSW BLS in online estimation of time-varying parameters is superior to that of the 
recent VLSW BLS algorithm. Although as shown in Figure 2, only estimate of xB  using the 



 

 

       Iranian Journal of Mechanical Engineering                                            Vol. 8, No. 2, March 2008   

 

70

VLSW BLS has a bit more deviation from its desired value with respect to that of the FVLSW 
algorithm, estimate of other five parameters using the FVLSW resulted in a remarkably better 
tracking precision, as can be observed easily in Figures 3 through 9. Specially, deviation of zB  
and zG  from their desired values using the VLSW is not satisfactory. Due to devoting an 
individual index to detect the stop of changes in the VLSW [7], this algorithm resulted in a better 
performance for declaring the stop point of abrupt changes. However, in the particular 
application, the effect of this superiority of the VLSW BLS estimator is not considerable in 
overall performance of the heading reference system. The accuracy of heading angle, which is 
computed after application of estimated calibration parameters to raw measurements of the three-
axis magnetometers, is evaluated as the overall performance of the estimation algorithms. 
Therefore, the overall performances of the BLS estimation algorithm with- and without- using 
change detection mechanisms are compared in Figure 8. It is shown that the overall performance 
of FVLSW BLS is evidently superior to that of the VLSW BLS. 
      Next, robustness of FVLSW and VLSW systems against noises is investigated after adding a 
white Gaussian noise on measurements of the three-axis magnetometers in addition to soft- and 
hard-iron magnetic disturbances. The covariance is taken to be isotropic with a standard deviation 
of 50 nano-tesla (NT), which is equal to noise of the common magnetometers. The measurements 
are sampled every 0.02 second over a 100-second span. Heading errors that are obtained from a 
calibrated heading reference system using FVLSW and VLSW change detectors together with 
BLS estimation algorithm have been shown in Figure 9. Although weakness of the VLSW BLS 
in attenuating noise effects on estimated parameters is evident, performance of the FVLSW BLS 
is excellent for parameter estimation from noisy measurements due to noise filtering capability of 
fuzzy membership functions. In Figures 10 and 11, estimation of yB  and zG  using the FVLSW 
BLS and VLSW BLS algorithms, shows the strong capability of the proposed fuzzy algorithm in 
noisy environments. Monte-Carlo simulation results in Table 2, which is executed for 100 runs, 
revealed a comprehensive evaluation of both fuzzy and non-fuzzy estimation algorithms in the 
sense of root-mean-square (RMS) errors. 
      Next, performance of the proposed estimation and modeling schemes is evaluated using 
experimental tests data. The system under test is a Vitans type magnetic heading reference 
system, which is strapped on a ride vehicle as shown in Figure 12. However, this system is 
affected by soft- and hard-iron disturbances due to non-geomagnetic local fields. Several tests are 
carried out in different maneuvering situations of the vehicle in mountain roads, highways, and 
city avenues to obtain as much as possible extensive data. 
      Figures 13 and 14 show that the FVLSW scheme resulted in a better tracking quality of the 
vehicle heading with respect to the VLSW scheme. Since the implementations are run using 
measurements of the three-axis magnetometers, the resulting heading angle of the vehicle should 
be considered with respect to magnetic reference north. Therefore, error of the estimated heading 
from that was found by integrated INS/GPS should accompany a bias. After performing the 
FVLSW- and VLSW- BLS algorithms for near one-hour tests data, mean of the heading biases 
were found to be 4.83º and 9.67º, respectively. On the other hand, declination angle around 
geographical location of the tests using international geomagnetic reference field model [16], was 
found to be 6.5º. Therefore, the FVLSW BLS worked well because of its less bias errors with 
respect to that of the VLSW BLS algorithm. 
      A final investigation of the aforementioned algorithms performance is carried out based on 
norm of the magnetometers output vector before and after removing disturbance effects. In 
Figure 15, plot of these norms for data of the vehicle test in mountain road revealed that online 
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calibration of the three-axis magnetometers system using estimated parameters led to obtain 
expected fixed norm of the measurement vector. Small deviations in the norm are because: new 
model of heading reference system is based on a predetermined downward component of the 
earth’s magnetic field vector without considering other two local level components, the actual 
noises may are non-Gaussian, and the estimated parameters are together with small errors 
especially during abrupt changes. These errors are so small such that the expected results of 
estimation algorithms are completely obtained. 
 
6   Conclusions 
 
In the paper, a new real-time FVLSW BLS algorithm was proposed to estimate the parameters 
under both abrupt and gradual changes. Fuzzy combination of two important change detection 
indices including generalized likelihood ratio and averaged parameter estimation error together 
with their rates resulted in intelligently adjusted lengths of sliding windows for updating change 
detection indices and BLS estimation algorithm. 
     Incorporation of direction cosine matrix in regression models exposed a way for increasing the 
order of persistent excitation of the corresponding squared signal matrix. Using this modeling 
technique in the FVLSW BLS algorithm had profound effects on the accuracy and convergence 
speed of online parameter estimation. Performance of the proposed FVLSW was evaluated in 
comparison to that of the VLSW using both simulated and actual test data of a magnetic heading 
reference system. Monte-Carlo type simulation, executed for 100 runs, showed evidently better 
performance for FVLSW in the sense of RMS of estimation errors. 
In addition to Table 2, more figured results showed that the performance of the FVLSW had 
significantly better quality compared to that of the VLSW. Especially, when the noise power of 
the Vitans sensors was considered in simulations, unlike VLSW, the FVLSW algorithm had 
excellent performance in detection of both abrupt and gradual change regimes. Therefore, it led 
to a satisfactory BLS parameter estimation.  
     In the meantime, experimental performances of the FVLSW and the VLSW algorithms 
together with proposed regression model of the three-axis magnetometers were examined using 
actual tests data of a strapped system on a ride vehicle. In comparison to heading angle by 
integrated INS/GPS as a reference, implementing both of the fuzzy and non-fuzzy change 
detectors in BLS estimation algorithm resulted in an acceptable tracking accuracy of the vehicle 
heading. However, the accuracy of heading angle obtained from the FVLSW is certainly superior 
to that obtained from the VLSW in which the mean of biases during one-hour tests were 1.67° 
and 3.17° using FVLSW and VLSW, respectively. Norm of the magnetic field vector before and 
after removing disturbance effects was investigated as another performance index. The relation 
between horizontal components of the earth’s magnetic field vector (5), which was not used as a 
complementary regression model because of its strongly coupled and nonlinear structure, may be 
considered as a nonlinear constraint for regression model of (4) in the future. Therefore, small 
variations in norm of the magnetometers measurement vector may be decreased, which in turn 
can improve the accuracy of determined heading angle. From test results, it was shown that the 
FVLSW resulted in a better performance in the sense of vector norm than that of the VLSW. 
However, when fluctuations in norm of raw data were small, the resulted heading angle using 
both the FVLSW and VLSW algorithms was close to reference heading of the INS/GPS (errors 
were less than 1°). Once bigger fluctuations in norm of the magnetometers output appeared due 
to big disturbances, better performance of the FVLSW BLS estimator was evident with respect to 
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that of the VLSW BLS estimator in the sense of heading accuracy and of the norm of corrected 
outputs. 
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Tables 
 
                                                Table 1 Search table of fuzzy rules                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                     Table 2 RMS errors of the BLS estimations 
 
 

kg    kgθ   kg∇    kgθ∇  kN    tN      λ  
S S S S L L L 
S S S L L M L 
S S L S L L L 
S S L L L M L 
S L S S M L M 
S L S L M M M 
S L L S M M M 
S L L L M S M 
L S S S M L S 
L S S L L M M 
L S L S M M M 
L S L L M S M 
L L S S S M M 
L L S L S M M 
L L L S S M L 
L L L L S S L 

 Free of noise Noisy 
FVLSW VLSW FVLSW VLSW 

Bx 73.103 159.14 813.56 45220 
By 104.062 255.84 177.93 80735 
Bz 744.205 26900 24.222 16381 
Gx 0.156 0.236 0.3578 0.593 
Gy 0.181 0.259 0.3931 0.685 
Gz 0.226 1.140 0.3464 2.759 
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    (a) Generalized likelihood ratio, kg .                           (b) Averaged parameter estimation error, kgθ . 
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    (c) Difference of averaged likelihood ratios, kg∇ .     (d) Change rate of averaged estimation error. 
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   (e) Length of BLS estimator sliding window, kN .       (f) Forgetting factor λ . 

Figure 1 Membership functions of fuzzy change detection system inputs and outputs 
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        Figure 4 True and estimated second hard iron bias              Figure 5 True and estimated first soft-iron gain 
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                        Figure 6 Estimation error of zB .                                           Figure 7:. Estimation error of zG . 
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Figure 8 Heading angle error with- and with-out on-              Figure 9  Noise effects on heading error with  and 
line calibration of three-axis magnetometers system.              with-out online calibration 
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Figure 10 Estimated yB using noisy measurements.             Figure 11  Estimated xG using noisy measurements. 
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Figure 12 Test vehicle together with Vitans system.           Figure 13  Estimated and INS/GPS headings. 
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Figure 14 Error between the estimated and INS/GPS.                Figure 15 Norm of the magnetometers output  
headings.                                                                                        vector after and before estimation algorithms. 
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   چكيده
  

محوره تحت تأثير اغتشاشات مغناطيسي نرم و  سنج متعامد سه در خودروهاي زميني، سنسورهاي مغناطيس
بدون  ،از شمال با دقت و كيفيت مورد نيازبدست آوردن زاويه سمت  ،بنابراين. گيرند سخت زيادي قرار مي

 براي تخمين برخط. پذير نيست گيري امكان تخمين اغتشاشات كاليبراسيون و جبران آنها در بردار اندازه
مرتبه غناي معادل تعداد پارامترها ضروري  حدأقل با) يا سيگنال(هاي متغير با زمان، ماتريس رگرسور  پارامتر
از طريق درگير كردن ماتريس سمت كسينوسي  مرتبه غناي سيستمدا ايده بديع افزايش در اين مقاله، ابت. است

مربعات بلوكي فازي همراه با طول پنجره  حدأقلزن بديع  سپس، تخمين. شود در مدل رگرسور تخمين ارائه مي
و يا تدريجي  سيستم كه تحت تغييرات سريع درنگ پارامترهائي از  بلا  لغزشي متغير به منظور تخمين برخط و

ايده اصلي اين روش، تركيب فازي دو مكانيزم تشخيص تغييرات شامل نسبت حداكثر . شود هستند ارائه مي
ها و همچنين نرخ تغيير آنها براي توليد يك سيستم فازي  يافته و خطاي متوسط پارامتر احتمال تعميم

طول دو پنجره لغزشي براي بروزرساني  خروجي سيستم فازي. دهنده تغيير و يا خرابي در سيستم است تشخيص
مربعات و همچنين يك ضريب  حدأقلهاي آشكارساز تغييرات و بروزرساني تخمين پارامترها در الگوريتم   مكانيزم

دهند  هاي خودرو نشان مي ها و تست سازي نتايج شبيه. هاي جديدتر است  دهي بيشتر به داده فراموشي براي وزن
ايي اخير  مربعات دسته حدأقلبهتر از عملكرد آن با الگوريتم  زن جديد كه عملكرد سيستم تعيين سمت با تخمين

  .شود قابل ملاحظه باشد بيشتر مشخص مي ها ر مواقعي كه قدرت نويزن روش دمزاياي اي. ارائه شده است


