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This paper is dealing with the Elastoplastic analysis of rotating disks 

of variable thickness made of functionally graded materials based on 

Tresca's yield criterion. To do so, the governing equations of rotating 

annular disks are established based on the elasticity theory. Then, 

using Tresca's yield criterion and the elastic-perfectly plastic flow law, 

the displacement equations and stresses are obtained in the plastic 

region. In order to find the effects of the shape of the disk profile on 

its stress distribution, the thickness of the disk cross-section is 

supposed to vary as an exponential function of the radius. In addition, 

considering different places at which the yielding starts, the process 

of expanding the plastic flow is investigated. The obtained results are 

validated against those reported for homogeneous as well as constant 

thickness FGM disks, showing good agreement. The findings also 

demonstrate that taking the variable thickness for the disk cross-

section into account has a significant effect on the stress distribution 

and prediction of the place where the yielding initiate. 

 
Keywords: Rotating disk, Elastoplastic analysis, Functionally graded materials, Tresca yield 

criterion 

 
1 Introduction 
 

In most engineering designs and analyzes; the equivalent stress is not allowed to exceed the 

elastic limit and applying the safety factor makes the situation worse, so that one cannot use the 

full capacity of a structure to withstand the applied loads. It means that the weight of the 

structure, costs construction, and in some cases fuel consumption would increase. 

Rotating equipment, such as rotating disks, play a key role in various industries, i.e., aerospace, 

automotive, and marine, so that it is necessary to accomplish research on its various aspects. 

Recently, the applications of functionally graded materials in manufacturing the rotating disks 

have attracted great attention. These materials show gradual and continuous changes of 

composition, structure and properties in different directions of the piece.  
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In 1925, László studied the elastoplastic behavior of a rotating disk and since then, this subject 

attracted the attention of other researchers [1]. However, more serious efforts in the field of 

elastoplastic is attributed to Gamer. He published four papers on the deformation and 

distribution of the elastoplastic stresses in a rotating disk with different boundary conditions 

using the Tresca's yield criterion and flow law. Gamer supposed a constant value for the disk 

density and thickness [1-4]. Güven investigated the effect of density on the elastoplastic stresses 

of a rotating annular disk of variable thickness [5] and under external pressure [6], considering 

Tresca's yield criterion and flow law. Rees compared the stress distribution of rotating disks on 

the basis of both Von Mises and Tresca's yield criterions and obtained a significant difference 

between these two [7]. You and Zhang presented a solution for elastoplastic of a solid-state disk 

using Von Mises yield criteria [8]. You et al., presented a numerical solution, based on Runge-

Kutta numerical method, for a variable thickness and density rotating disk with a nonlinear 

hardness [9]. Eraslan and Orcan analyzed an elastoplastic tension of solid-state rotating disk of 

exponentially variable thickness and linear stiffness  [10]. They presented an analytical solution 

using the Tresca's yield criterion, the linear flow, and linear strain hardening rule for 

elastoplastic deformation of a solid-state rotating disk [11]. In another work, they investigated 

the point at which the yielding initiates in a variable thickness annular disk [12]. Vullo and 

Vivio solved the equations of a rotating elastoplastic disk of variable-thickness and nonlinear 

strain hardening [13]. Toussi and Farimani analyzed the deformation in a rotating elastoplastic 

disk for velocities more than yielding limit. They investigated the effects of different 

parameters, including cross-sectional profiles and material properties, on the critical velocities 

of the disk [14]. Haghpanah et al., presented a numerical solution for the elastoplastic analysis 

of a rotating disk made of functionally graded materials of linear hardening [15]. Zamani Nejad 

et al., presented an accurate analytical elastoplastic solution for a constant thickness rotating 

disk made of functionally graded material [16]. Lomakin et al. analyzed the elastoplastic strain 

fields of an annular rotating disk using the Von Mises' yield criterion in conjunction with the 

flow law [17]. Thawait et al. presented an elastic analysis of functionally graded variable 

thickness rotating disk by element-based material grading [18]. The results of that work showed 

that there is a significant reduction of stresses in functionally graded material disks as compared 

to homogeneous disks and the disks modeled by power law functionally graded material have 

better strength. A finite-difference method is used to obtain the thermal elastic-plastic stresses 

and strains for a rotating annular disk by Sharma and Sanehlata [19]. In that work, the disk was 

made of functionally graded materials whose thickness decreases exponentially and density 

increases exponentially with non-linear strain hardening behavior. An analysis of propagation 

of elastic-plastic front of functionally graded rotating disk under centrifugal and thermal load 

in post-elastic regime has been done by Nayak et al. [20]. In that work the modeling of 

functionally graded materials has been done using power law variation of volume fraction. 

Semka et al. analyzed the use of various piecewise linear and smooth plasticity functions and 

flow theory to solve the rotating disk problem and to compare the determined displacement and 

deformation fields for the selected plasticity functions [21]. In that work, it has been proved that 

the Tresca yield condition can be employed to solve problems similar to the rotating disk 

problem. Sharma et al. studied thermoelastic characteristics in the functionally graded material 

rotating disk with the help of a finite element method under exponentially and linearly varying 

material properties along radius of disk [22]. Kholdi et al. presented a thermo-elasto-plastic 

analysis of a rotating disk made of functionally graded materials using successive 

approximation method [23]. They have investigated effects of angular speed, percentage of 

ceramic particles, particle reinforcement power, and boundary conditions on radial and 

tangential thermo-elasto-plastic strains, stresses, and equivalent stresses. 

To the best of the authors’ knowledge, there is a lack of comprehensive study of the elastoplastic 

response of variable thickness functionally graded annular disks.  
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In the present paper, this deficiency is tried to be fulfilled. To do so, variable thickness 

functionally graded circular annular disks are taken into account in conjunction with Tresca’s 

yield criterion in order to study the elastoplastic response. Figure (1) shows a schematic 

representation of the problem under consideration, and the geometrical and loading main 

parameters. In this figure, 𝑎 and 𝑏 are respectively the inner and outer radius, and 𝜔 the angular 

velocity. 

 
2 Governing equations 

 

As shown in figure (1), there is a circular annular rotating disk at an angular velocity of 𝝎 with 

the internal radius of 𝒂 and external radius of 𝒃 made of functionally graded materials that is 

sufficiently thin and large. According to the geometry of the problem, formulation and review 

of results in a cylindrical coordination is performed and presented. The thickness of the disk 

cross section, the elastic modulus, the density, and the yielding tension are assumed to be in the 

form of power-law functions of the radial coordinate, as presented by equation (1). 

 

(1) 

ℎ(𝑟) = ℎ0 (
𝑟

𝑏
)
𝛿𝑡𝑛

 

𝐸(𝑟) = 𝐸0 (
𝑟

𝑏
)
𝛿𝐸𝑛

 

𝜌(𝑟) = 𝜌0 (
𝑟

𝑏
)
𝛿𝜌𝑛

 

𝜎𝑌(𝑟) = 𝜎𝑌0 (
𝑟

𝑏
)
𝛿𝜎𝑛

 

 
in which ℎ0, 𝐸0, 𝜌0 and 𝜎𝑌0 are the thickness, modulus of elasticity, density, and yield stress at 

the outer radius, 𝑟 = 𝑏, respectively.𝛿𝑡, 𝛿𝐸, 𝛿𝜌 and 𝛿𝜎 denote some constant values, and n is the 

power parameter. If the properties presented by equation (1) are generally denoted by 𝑃 and its 

value in the outer radius by 𝑃0, the variation of the dimensionless property, i.e., 𝑃̅ = 𝑃 𝑃0
⁄ , can 

be depicted as a function of dimensionless radius, 𝑟̅ = 𝑟/𝑏,  as shown in figure (2). 

 

 

 
 

Figure 1 Schematic representation of a FGM disk and its main parameters 
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Figure 2 Variation of an arbitrary dimensionless geometrical or material property 𝑷̅, as a function of the 

dimensionless radius 𝒓̅ 

 
2.1 Elastic Behavior Analysis 

 

The equilibrium equation of the rotating disk considering the thickness effect is given by 

equation (2): 

 

(2) 
𝑑

𝑑𝑟
(ℎ𝑟𝜎𝑟) − ℎ𝜎𝜃 + ℎ𝜌𝜔

2𝑟2 = 0 
 

 
in which 𝜎𝑟 and 𝜎𝜃 are the components of radial and circumferential stresses. It should be noted 

that body force due to the weight (𝜌𝑔) is neglected. The radial and peripheral displacements are 

considered as u and v, respectively. Regarding axisymmetric assumption, there is no 

circumferential change so that v = 0. Therefore, the strain-displacement relations in the 

cylindrical coordinates are equal to: 

 

 𝜀𝑟 =
𝑑𝑢

𝑑𝑟
 

(3) 𝜀𝜃 =
𝑢

𝑟
 

 𝛾𝑟𝜃 = 0 

 

in which 𝜀𝑟 is the radial strain, 𝜀𝜃 the circumferential strain, and 𝛾𝑟𝜃 the shear strain. Using 

Hooke's law for the plane stress state and substitution of strain-displacement relations presented 

in equation (3), the stress relationship in term of radial displacement is given by: 
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(4) 

𝜎𝑟 =
𝐸(𝑟)

1 − 𝜈2
(
𝑑𝑢

𝑑𝑟
+ 𝜈

𝑢

𝑟
) 

𝜎𝜃 =
𝐸(𝑟)

1 − 𝜈2
(
𝑢

𝑟
+ 𝜈

𝑑𝑢

𝑑𝑟
) 

 

where 𝜈 is the Poisson ratio. Using the stress components presented by equation (2), the 

equilibrium equation of the disk might be expressed by equation (5): 

 

(5) 

𝑟2
𝑑2𝑢

𝑑𝑟2
+ (𝑛𝐸 + 𝑛𝑡 + 1)𝑟

𝑑𝑢

𝑑𝑟
+ ((𝑛𝐸 + 𝑛𝑡)𝜈 − 1)𝑢  

= −
1 − 𝜈2

𝐸0
𝜌0𝑏

𝑛𝐸−𝑛𝜌𝜔2𝑟(𝑛𝜌−𝑛𝐸+3) 

Hereafter, the parameters 𝑛𝑡 = 𝛿𝑡𝑛, 𝑛𝐸 = 𝛿𝐸𝑛, 𝑛𝜌 = 𝛿𝜌𝑛, and 𝑛𝜎 = 𝛿𝜎𝑛 are used in order to 

simplify the derived equations. The analytic solution of the second-order differential equation 

of (5), in term of displacement, has the generalized form as: 

 
(6) 𝑢 = −𝐴𝑟𝑚3+𝐶1𝑟

𝑚1 + 𝐶2𝑟
𝑚2 

 

Where 𝐶1 and 𝐶2 denote integration constants., and 𝐴, 𝑚1, 𝑚2, and 𝑚3 parameters can be 

formulated as follows: 

 

(7) 

𝐴 =
(
1 − 𝜈2

𝐸0
) 𝜌0𝑏

𝑛𝐸−𝑛𝜌𝜔2

𝑛𝜌(𝑛𝜌 + 6) + (𝜈 − 𝑛𝜌 − 3)𝑛𝐸 + (𝑛𝜌 − 𝑛𝐸 + 3 + 𝜈)𝑛𝑡 + 8
 

𝑚1 =
−(𝑛𝐸 + 𝑛𝑡) + √(𝑛𝐸 + 𝑛𝑡)2 − 4((𝑛𝐸 + 𝑛𝑡)𝜈 − 1)

2
 

𝑚2 =
−(𝑛𝐸 + 𝑛𝑡) − √(𝑛𝐸 + 𝑛𝑡)2 − 4((𝑛𝐸 + 𝑛𝑡)𝜈 − 1)

2
 

𝑚3 = 𝑛𝜌 − 𝑛𝐸 + 3 

 

By substituting equation (6) into (4), the radial and circumferential stresses can be obtained 

using the following equation: 

 

(8) 

𝜎𝑟 =
𝐸(𝑟)

1 − 𝜈2
[−𝐴(𝑚3 + 𝜈)𝑟

(𝑚3−1)+(𝑚1 + 𝜈)𝐶1𝑟
𝑚1−1 + (𝑚2 + 𝜈)𝐶2𝑟

𝑚2−1] 

𝜎𝜃 =
𝐸(𝑟)

1 − 𝜈2
[−𝐴(𝑚3𝜈 + 1)𝑟

𝑚3−1+(𝑚1𝜈 + 1)𝐶1𝑟
𝑚1−1 + (𝑚2𝜈 + 1)𝐶2𝑟

𝑚2−1]          
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Constants 𝐶1 and 𝐶2 can be obtained from the specified boundary conditions. For an annular 

disk, radial stress at the inner radius (𝜎𝑟)𝑟=𝑎 and outer one (𝜎𝑟)𝑟=𝑏 is zero. Consequently, 

applying the boundary conditions for an annular disk, the constants 𝐶1 and 𝐶2 are obtained as: 

 

 

(9) 

𝐶1 =
(𝑎𝑚2𝑏(3) − 𝑎𝑚3𝑏𝑚2+𝑛𝐸−𝑛𝜌)𝑅

(𝑚1 + 𝜈)(𝑎𝑚2𝑏𝑚1 − 𝑎𝑚1𝑏𝑚2)
 

𝐶2 =
(𝑎𝑚3−1𝑏𝑛𝐸−𝑛𝜌+𝑚1−1 − 𝑎𝑚1−1𝑏(2))𝑅

(𝑚2 + 𝜈)(𝑎
𝑚2−1𝑏𝑚1−1 − 𝑎𝑚1−1𝑏𝑚2−1)

 

 

where R denotes a constant parameter which can be expresses by equation (10). 

 

(10) 𝑅 =
(𝑚3 + 𝜈) (

1 − 𝜈2

𝐸0
) 𝜌0𝜔

2

𝑛𝜌(𝑛𝜌 + 6) + (𝜈 − 𝑛𝜌 − 3)𝑛𝐸 + (𝑛𝜌 − 𝑛𝐸 + 3 + 𝜈)𝑛𝑡 + 8
 

 
In order to obtain a general solution, the following dimensionless parameters are taken into 

account: 

 

0

0

Y

uE
u

b
  

0

1
2

  
Y

b





 
  
 
 

Ω  
r

r
b

   

0

 r
r

Y





  

0

 
Y








  

a
a

b
  (11) 

1

0

1

1 0
1  

m

Y

C E b
C





  
2

0

1

2 0
2  

m

Y

C E b
C





    

 

2.2 Investigation of yielding initiation  

 

To obtain the angular velocity corresponding to the yield threshold and investigation of the 

yield conditions, the Tresca's yield criterion has been used. To do so, the principal stresses must 

be obtained. On the other hand, the order of the main tensions (𝜎𝑟 and 𝜎𝜃 in this problem) 

depends on the numerical value of the exponential parameters 𝑛𝑡, 𝑛𝐸 , 𝑛𝜌, 𝑛𝜎 and the ratio of 

radii (𝑟 𝑏⁄ ). Therefore, referring to reference [16], to monitor the start of yielding, the 

dimensionless variable Ψ has been used. This variable is based on Tresca's criterion and is 

defined as: 

 
(12) 𝛹(𝑟̅) = 𝑟̅(−𝑛𝜎)𝑀𝑎𝑥{(𝜎̅𝜃 − 𝜎𝑟), (𝜎̅𝜃), (𝜎𝑟)} 

 

The above criterion states that yield starts at a point at which Ψ has its highest value, i.e., Ψ=1. 

To analyze the behavior of a rotating disk made of functionally graded materials, depending on 
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the value of power parameters, the yield may start from inner radius, outer radius, 

simultaneously at inner and outer radius or somewhere in between. 

 

2.2.1 Initiation of the yielding from the inner radius 

 

Yield begins from the inner radius when 𝛹(𝑎̅) = 1 and function 𝛹 at the inner radius is of the 

highest absolute value. Using the stresses expressed by equation (8) and the boundary condition 

as (𝜎𝑟)𝑟̅=𝑎̅ = 0, the non-dimensional critical angular velocity, Ω𝑒1, is obtained as: 

 

 

(13) 

𝛺𝑒1 = {𝑆[−(𝑚1 + 𝜈)(𝑚2 + 𝜈)(𝑚3𝜈 + 1)(𝑎̅
𝑚2 − 𝑎̅𝑚1)𝑎̅(𝑚3) + (𝑚1𝜈

+ 1)(𝑚2 + 𝜈)(𝑚3 

+𝜈)(𝑎̅𝑚2 − 𝑎̅𝑚3)𝑎̅𝑚1 

+(𝑚2𝜈 + 1)(𝑚1 + 𝜈)(𝑚3 + 𝜈)(𝑎̅
𝑚3 − 𝑎̅𝑚1)𝑎̅𝑚2]−1}0.5 

 

where 𝑆 and 𝐻 are constant parameters presented by equations (14) and (15), respectively: 

 

(14) 𝑆 =
(1 − 𝜈2)(𝑚1 + 𝜈)(𝑚2 + 𝜈)(𝑎̅

𝑚2 − 𝑎̅𝑚1)

𝐻(𝑎̅)𝑛𝐸−𝑛𝜎−1
 

(15) 𝐻 =
(1 − 𝜈2)

𝑛𝜌(𝑛𝜌 + 6) + (𝜈 − 𝑛𝜌 − 3)𝑛𝐸 + (𝑛𝜌 − 𝑛𝐸 + 3 + 𝜈)𝑛𝑡 + 8
 

 

2.2.2 Initiation of the yielding from outer radius 

 

In this case, the yield begins at the outer radius where the function 𝛹 has the highest absolute 

value, i.e., 𝛹(1) = 1. Using the stress components and the specified boundary condition as 

(𝜎𝑟)𝑟̅=𝑏̅ = 0, the non-dimensional critical angular velocity, Ω𝑒2, is obtained as presented by 

equation (16): 

 

         

     

32 1 2

3 1

2 1 2 3 1 2 3

0.5
1

2 1 3

( 1 ( 1)

1 ( ) ]

mm m m

e b

m m

S m m m a a m m m a a

m m m a a

     

   

           

    

 (16) 

 
where the constant 𝑆𝑏 is defined as: 

 

(17) 𝑆𝑏 =
(1 − 𝜈2)(𝑚1 + 𝜈)(𝑚2 + 𝜈)(𝑎̅

𝑚2 − 𝑎̅𝑚1)

𝐻
 

 
2.2.3 Simultaneous yield at the inner and outer radius  

 

In this case, the yield starts simultaneously at the inner and outer radius, where the function 𝛹 

is of its highest value, i.e., 𝛹(𝑎̅) = 1 and 𝛹(1)  =  1. Regarding the boundary conditions of 
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the disk and using relations (13) and (16), the critical dimensionless angular velocity of the 

rotating disk, Ω𝑐𝑟, and the critical power parameter, 𝑛𝑐𝑟, are obtained by solving equation (18):  

 
𝛺𝑐𝑟 − {𝑆𝑎[−(𝑚1 + 𝜈)(𝑚2 + 𝜈)(𝑚3𝜈 + 1)(𝑎̅

𝑚2 − 𝑎̅𝑚1)𝑎̅(𝑚3) 

+〖(𝑚〗1𝜈 + 1)(𝑚2 + 𝜈)(𝑚3 + 𝜈)(𝑎̅
𝑚2 − 𝑎̅𝑚3)𝑎̅𝑚1  

+(𝑚2𝜈 + 1)(𝑚1 + 𝜈)(𝑚3 + 𝜈)(𝑎̅
𝑚3 − 𝑎̅𝑚1)𝑎̅𝑚2]−1}0.5 = 0 

 (18) 

𝛺𝑐𝑟 − {𝑆𝑏[−(𝑚1 + 𝜈)(𝑚2 + 𝜈)(𝑚3𝜈 + 1)(𝑎̅
𝑚2 − 𝑎̅𝑚1) 

+(𝑚1𝜈 + 1)(𝑚2 + 𝜈)(𝑚3 + 𝜈)(𝑎̅
𝑚2 − 𝑎̅𝑚3) 

+(𝑚2𝜈 + 1)(𝑚1 + 𝜈)(𝑚3 + 𝜈)(𝑎̅
𝑚3 − 𝑎̅𝑚1)]−1}0.5 = 0 

 

2.2.4 Initiation of yielding at some place between inner and outer radius 

Considering 𝑟ep as the radial position of the points at which the initiation of yielding occurs, 

the following relations are valid. 

 

(19) {

𝛹(𝑟̅𝑒𝑝) = 1

𝑑𝛹

𝑑𝑟
|
𝑟̅=𝑟̅𝑒𝑝

= 0
 

 
For a power parameter 𝑛, the required rotational angular velocity to start the plastic flow and 

the starting point of the yield is calculated by equation (19). 

 
2.3 Analysis of Plastic Behavior 

 

In this section, the stresses are always considered to be arranged in such a way that 𝜎𝜃 > 𝜎𝑟 >
𝜎𝑧 = 0. Accordingly based on the Tresca's criterion, 𝜎𝜃

𝑃 = 𝜎𝑌 is considered. Substituting 𝜎𝑌 

into the equilibrium equation (2) implies the following differential equation: 

 

(20) 

𝑑

𝑑𝑟
(ℎ𝑟𝜎𝑟

𝑃) = ℎ𝜎𝑌0(
𝑟

𝑏
)𝑛𝜎 − ℎ𝜌𝜔2𝑟2 

 
Solving the first-order linear differential equation (20) yields: 

 

(21) 𝜎𝑟
𝑃 = 𝜎𝑌0𝑏

−𝑛𝜎 (
𝑟𝑛𝜎

𝑛𝜎 + 𝑛𝑡 + 1
) − 𝜌0𝑏

−𝑛𝜌𝜔2(
𝑟(𝑛𝜌+2)

𝑛𝑡 + 𝑛𝜌 + 3
) + 𝐶3𝑟

(−𝑛𝑡−1) 

 
In this relation, 𝐶3 denotes the integrating constant that can be calculated according to the 

boundary conditions. Dimensionless shapes of stresses in the plastic region, 𝜎𝜃
𝑃 and 𝜎𝑟

𝑃, are as: 

 
𝜎𝜃
𝑃 = (𝑟̅)𝑛𝜎 

(22) 
𝜎𝑟
𝑃 = (

(𝑟̅)𝑛𝜎

𝑛𝜎 + 𝑛𝑡 + 1
) − (

Ω2

𝑛𝑡 + 𝑛𝜌 + 3
)𝑟̅(𝑛𝜌+2) + 𝐶3̅𝑟̅

(−𝑛𝑡−1) 
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where 𝐶3̅ is defined as: 

 

(23) 
𝐶3̅ =

𝐶3
𝜎𝑌0𝑏

𝑛𝑡+1
 

 
According to the plastic flow law and the stress state (𝜎𝜃 > 𝜎𝑟 > 𝜎𝑧 = 0), 𝜀𝑟

𝑃 = 0 is considered.  

Taking the constant volume law in the plastic region into account, i.e., 𝜀𝑟
𝑃 + 𝜀𝜃

𝑃 + 𝜀𝑧
𝑃 = 0, one 

would have 𝜀𝜃
𝑃 = −𝜀𝑧

𝑃.  The total strain in any direction is the sum of elastic strain and plastic 

strain in that direction: 

 
 
(24) 
 

𝜀𝑟 = 𝜀𝑟
𝑒  

𝜀𝜃 = 𝜀𝜃
𝑒 + 𝜀𝜃

𝑝
 

 

where superscripts 𝑒 and 𝑝 respectively denote the elastic and plastic part of the strain. Using 

the strain-displacement relations, the Navier equation in the plastic region is obtained as: 

 

(25) 

𝑑𝑢

𝑑𝑟
=
1

𝐸0
(
𝑟

𝑏
)
−𝑛𝐸

[𝜎𝑌0(
𝑟

𝑏
)𝑛𝜎 (

1

𝑛𝜎 + 𝑛𝑡 + 1
− 𝜈) − 𝜌0𝑏

−𝑛𝜌𝜔2(
𝑟(𝑛𝜌+2)

𝑛𝑡 + 𝑛𝜌 + 3
)

+ 𝐶3𝑟
(−𝑛𝑡−1)] 

 

Solving equation (25), the displacement in the plastic region implies: 

 
 

(26) 

𝑢𝑝 =
1

𝐸0
[

𝜎𝑌0𝑏

𝑛𝜎−𝑛𝐸 + 1
(
𝑟

𝑏
)
𝑛𝜎−𝑛𝐸+1

(
1

𝑛𝜎 + 𝑛𝑡 + 1
− 𝜈)

−
𝜌0𝜔

2𝑏3

(𝑛𝑡 + 𝑛𝜌 + 3)(𝑛𝜌−𝑛𝐸 + 3)
(
𝑟

𝑏
)
𝑛𝜌−𝑛𝐸+3

+
𝐶3𝑏

𝑛𝐸

(−𝑛𝑡−𝑛𝐸)
𝑟(−𝑛𝑡−𝑛𝐸)]

+ 𝐶4 

 

where 𝐶4 is a constant of integration. The dimensionless form of displacement in the plastic 

region might be expressed as: 

 

 

(27) 

𝑢̅𝑝 = [
1

𝑛𝜎−𝑛𝐸 + 1
𝑟̅𝑛𝜎−𝑛𝐸+1 (

1

𝑛𝜎 + 𝑛𝑡 + 1
− 𝜈)

−
Ω2

(𝑛𝑡 + 𝑛𝜌 + 3)(𝑛𝜌−𝑛𝐸 + 3)
𝑟̅𝑛𝜌−𝑛𝐸+3 +

𝐶3̅
(−𝑛𝑡−𝑛𝐸)

𝑟̅(−𝑛𝑡−𝑛𝐸)]

+ 𝐶4̅ 
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Where 
 

(28) 𝐶4̅ =
𝐶4

𝜎𝑌0𝑏
𝑛𝑡+1

 

 
3 Results 

 

In this section, the results obtained from the analysis of yield threshold of a rotating annular 

disk of variable thickness made of functionally graded materials are presented. In this research 

changes in the Poisson ratio are considered to be negligible so that a constant value of 0.3 is 

supposed throughout the paper. Radial ratio is considered to be 𝑎̅ = 0.5. Before investigating 

the effect of various parameters on the onset of yielding of a rotating disk, the proposed 

approach is validated. To do so, first the radial stress,  𝜎𝑟, as well as circumferential stress, 𝜎𝜃, 

corresponding to the critical angular velocity of a homogeneous annular disk with a constant 

thickness is investigated and the obtained results are compared with those reported in [12]. As 

shown in Fig. 3, it can be concluded the accuracy of the results of the analysis. It is worthwhile 

noting that for a homogeneous constant thickness rotating disk, the yielding always starts at the 

inner radius. In figure (4), the critical angular velocity at which yielding starts at the inner and 

outer radius is depicted with respect to 𝑎̅. Referring to this figure, 𝛺𝑒2  > 𝛺𝑒1 for all values of 

𝑎̅ .  As a result, for a homogeneous constant thickness annular disk the onset of yielding occurs 

at the inner radius. 

Figure (5) shows the critical angular velocity at which a homogeneous variable thickness disk 

yields at its inner and outer radius with respect to the dimensionless radius 𝑎̅ . The power 

parameter 𝑛𝑡 = -1 is considered. As shown in figure (5), for all values of the dimensionless 

radius, 𝑎̅, one has 𝛺𝑒2 > 𝛺𝑒1. Table (1) compares the critical angular velocities at the 

dimensionless inner radius of 𝑎̅ = 0.5. 

 

 
Figure 3 Dimensionless stress components of a constant thickness rotating disk as a function of dimensionless 

radius at the elastic limit angular velocity of 𝜴 = 𝟏. 𝟎𝟗𝟒𝟑𝟓𝟏 
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Figure 4 The variation of the critical angular velocity for the onset of yielding at inner and outer radius versus 

the dimensionless inner radius 𝒂̅, for a constant-thickness homogeneous disk 

 

 

 
 

Figure 5 The variation of the critical angular velocity for the onset of yielding at inner and outer radius versus 

the dimensionless inner radius 𝒂̅, for a variable-thickness homogeneous disk. 

 
Table 1 Dimensionless terminal rotational speed 𝜴 in inner radius 𝒂̅ = 𝟎. 𝟓 
 

critical angular velocity 𝛺𝑒2 critical angular velocity 𝛺𝑒1 power parameter n𝑡  

1.6196 1.0729 𝑛𝑡 = 0 
1.6678 1.1037 𝑛𝑡 = −0.5 
1.7180 1.1418 𝑛𝑡 = −1 
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In the next step, the radial stress, 𝜎𝑟, the circumferential stress, 𝜎𝜃, and the dimensionless 

function, 𝛹, with respect to the dimensionless radius, 𝑟̅, of a rotating annular disk made of 

functionally graded materials for the fixed thickness state are reviewed. As shown in figure (6), 

the results are compared with those reported in [16]. Referring to this figure, the power 

parameter of 𝑛 = 0.7424, critical angular velocity of Ω = 1.27165, the dimensionless inner radius 

of 𝑎̅ = 0.5, and 𝛹 =1 are taken into account, so that the yielding starts at the inner radius. The 

power constants are supposed to be as 𝛿t  = 0 and 𝛿𝐸 = 𝛿𝜌 = 2𝛿𝜎 = 2. As shown in figure (6), 

the obtained results are consistent with the results reported in [16]. 

 

 
Figure 6 Variation of the radial stress, 𝝈̅𝒓, circumferential stress, 𝝈̅𝜽, and dimensionless function, 𝜳, as a 

function of dimensionless radius, 𝒓̅. The critical angular velocity of 𝜴𝒆𝟏 = 𝟏. 𝟐𝟕𝟏𝟔𝟓 and the power parameter of 

𝒏 = 𝟎. 𝟕𝟒𝟐𝟒 are supposed. 

 

 
Figure 7 variation of the critical angular velocity versus the power parameter. 
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Figure (7) shows the effect of power parameter, 𝑛, on the non-dimensional angular velocity, Ω, 

at different thickness variations. As shown in this figure, increasing the value of 𝛿𝑡, increases 

the critical angular velocity due to the reduction of the stresses. Table (2) shows the critical 

values of 𝑛 and Ω for different values of 𝛿𝑡 which are obtained using figure (7). As might be 

seen, the value of the critical power, 𝑛𝑐𝑟, slightly decreases when the thickness variation 

increases. 

In order to determine the onset of yielding, some necessary and sufficient conditions must be 

satisfied. Table (3) summarizes the sufficient condition for the onset of yielding. The sufficient 

condition for the initiation of yielding is that the function Ψ takes the highest value at the 

starting point of yielding, otherwise, the plastic flow gets started at somewhere between the 

inner and outer radius. 

The various modes of yielding initiation of a rotating annular disk of variable thickness made 

of functionally graded materials are considered. To provide numerical results, the constant 

values of the power, δi, are supposed to be as 𝛿𝐸 = 𝛿𝜌 = 2𝛿𝜎 = 2 and 𝛿𝑡 = −0.5. Figure (8) 

shows the variation of the stresses and function 𝛹 as a function of dimensionless radius for 

power parameter of 𝑛 = 0.9 and a critical angular velocity of 𝛺 = 1.3532. As can be seen, at the 

inner radius (𝑎̅ = 0.5), the 𝛹 function has its highest value, i.e., 1, so that the yielding starts at 

the inner radius of the disk. 

In order to start yielding at the outer radius, the power parameter value of 𝑛 = 1.8 and the critical 

angular velocity of 𝛺 = 1.4055 are taken into account. As shown in figure (9), at the outer 

radius (𝑟 ̅= 1), the value of 𝛹 =1 is achieved, so that the yielding begins at the outer radius. 

For emphasizing the importance of the sufficient condition, the variation of the dimensionless 

function 𝛹 in terms of dimensionless radius 𝑟̅ for 𝑛 = 𝑛cr and 𝛺 = 𝛺𝑐𝑟 is depicted in figure 

(10). Referring to this figure, at the inner and outer radius, the value of 𝛹 = 1 is reached. 

However, the highest value of the function is at a point between the inner and outer radius, 

which means the yielding happens at some place in between. 

As already shown, the starting point of yielding is determined according to the values of the 

power parameter and the critical angular velocity. When the angular velocity increases to the 

values higher than the critical one, the region where the plastic deformation occurs would 

extend. As previously shown, a homogeneous disk starts to yield at its inner radius. Regarding 

the continuity of the disk, the displacement as well as stresses must be equal at the elastoplastic 

boundary. Accordingly, the following boundary conditions might be applied in order to obtain 

the unknown constants of the elastic and plastic regions as well as the radius of the elastoplastic 

region 𝑟𝑒𝑝: 

 

{
 
 

 
 
𝜎̅𝑟
𝑒(𝑟̅𝑒𝑝) = 𝜎̅𝑟

𝑝
(𝑟̅𝑒𝑝)

𝜎̅𝜃
𝑒(𝑟̅𝑒𝑝) = 𝜎̅𝜃

𝑝
(𝑟̅𝑒𝑝)

𝑢̅𝑒(𝑟̅𝑒𝑝) = 𝑢̅
𝑝(𝑟̅𝑒𝑝)

𝜎̅𝑟
𝑒(1) = 0               

𝜎̅𝑟
𝑝(𝑎̅) = 0               

 (30) 

 
 

Table 2 Critical values of non-dimensional angular velocity, 𝜴, and power parameter, 𝒏, for different values of 

𝜹𝒕. 

𝛺𝑐𝑟 𝑛𝑐𝑟 δ𝑡 

1.4236 1.2109 0 

1.4669 1.2055 −0.5 

1.5141 1.1995 −1 
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Table 3 The necessary conditions for onset yield 
 

rotational speed 𝛺 power parameter n place of getting started to yielding 

𝛺𝑒1 < 𝛺𝑒2 𝑛 < 𝑛𝑐𝑟 inside radius 

𝛺𝑒1 > 𝛺𝑒2 𝑛 > 𝑛𝑐𝑟 outside radius 

𝛺𝑒1 = 𝛺𝑒2 𝑛 = 𝑛𝑐𝑟 
simultaneously from inside radius and 

outside 

 

 
Figure 8 Variation of Radial stress 𝝈̅𝒓, circumferential stress 𝝈̅𝜽 and dimensionless function, 𝜳 as a function of 

dimensionless radius 𝒓̅ for the critical angular velocity of 𝜴𝒆𝟏 = 𝟏. 𝟑𝟓𝟑𝟐 and the power parameter of 𝒏 = 𝟎. 𝟗. 

 
 

 
Figure 9 Variation of Radial stress 𝝈̅𝒓, circumferential stress 𝝈̅𝜽 and dimensionless function, 𝜳 as a function of 

dimensionless radius 𝒓̅ for the critical angular velocity of 𝜴𝒆𝟐 = 𝟏𝟒𝟎𝟓𝟓 and the power parameter of 𝒏 = 𝟏. 𝟖. 



Behrooz Shahriari & Mohammad Reza Karamoozravari                                                                                     113 

The Iranian Journal of Mechanical Engineering Transactions of ISME                                    Vol. 24, No. 1, 2023 

 
Figure 10 Variation of dimensionless function, 𝜳 as a function of dimensionless radius, 𝒓̅, for the critical speed 

of 𝜴𝒄𝒓 = 𝟏. 𝟒𝟔𝟔𝟗 and the power parameter of 𝒏 = 𝟏. 𝟐𝟎𝟓𝟓. 

 
 

 
Figure 11 Variation of the radial stress, 𝝈̅𝒓, and circumferential stress, 𝝈̅𝜽,  as a function of dimensionless 

radius, 𝒓́𝒆𝒑, for the angular velocity of 𝛀 = 𝟏. 𝟒𝟒 

 

Figure (11) shows the progression of the plastic region of a homogeneous disk, for ν= 0.28 and 

the inner dimensionless radius 𝑎̅ = 0.2. As can be seen, at a critical angular velocity of 𝛺 = 

1.44, the boundary of the plastic region extends to the dimensionless radius of 𝑟𝑒𝑝 = 2.7375. 

The results are also consistent with those reported in [18]. 

As shown in figure (12), the progression of the plastic region for a rotating disk made of 

functionally graded materials with a fixed thickness (𝑛t = 0), is investigated., and the obtained 

results are compared with those reported in [16]. For power parameter of 𝑛 = 0.7424 and angular 
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velocity of 𝛺 =1.34, the boundary of the plastic region extends from inner radius to the 

dimensionless radius of 𝑟𝑒𝑝 = 0.735. As can be seen, the results are in geed agreement with 

those reported in [16]. 

Figure (13) shows the progression of the plastic region for a rotating disk made of functionally 

graded materials with variable thickness. For the power parameter 𝑛 = 0.9 and the angular 

velocity of 𝛺 =1.39, the boundary of the plastic region extends from the inner radius to the 

dimensionless radius of 𝑟𝑒𝑝 = 0.7313. Table (4) shows the unknown constants, 𝐶I, obtained in 

the elastic and plastic regions as well as the radius of the elastoplastic region 𝑟𝑒𝑝. 

 

 
Figure 12 Variation of the radial stress, 𝝈̅𝒓, and circumferential stress, 𝝈̅𝜽,  as a function of dimensionless 

radius, 𝒓̅, for the angular velocity of 𝛀 = 𝟏. 𝟑𝟒 and the power parameter of 𝒏 = 𝟎. 𝟕𝟒𝟐𝟒. 
 

 
Figure 13 Variation of the radial stress, 𝝈̅𝒓, and circumferential stress, 𝝈̅𝜽,  as a function of dimensionless 

radius, 𝒓̅, for the angular velocity of 𝛀 = 𝟏. 𝟑𝟗 and the power parameter of 𝒏 = 𝟎. 𝟗. 
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Table 4 unknown constants 𝑪𝐢 and radius of the elastoplastic region 𝒓𝒆𝒑 for the data presented in figure (13) 
 

𝒓𝒆𝒑 𝑪̅4 𝑪̅3 𝑪̅2 𝑪̅1 

0.7313 -3.0529 -0.2306 0.0934 0.9178 

 

 

 
Figure 14 Variation of the radial stress, 𝝈̅𝒓, and circumferential stress, 𝝈̅𝜽,  as a function of dimensionless 

radius, 𝒓̅, for the angular velocity of 𝛀 = 𝟏. 𝟒𝟔 and the power parameter of 𝒏 = 𝟏𝟖. 

 
Table 5 unknown constants 𝑪𝐢 and radius of the elastoplastic region 𝒓𝒆𝒑 for the data presented in figure (14) 

𝒓𝒆𝒑 𝑪̅4 𝑪̅3 𝑪̅2 𝑪̅1 

0.7552 1.4874 -0.1524 0.0227 1.2233 

 

Figure (14) shows the progression of the plastic region for a rotating annular disk from the outer 

radius. As can be seen, for the power parameter of 𝑛 = 1.8 and angular velocity of 𝛺 =1.46, the 

boundary of the plastic region extends from the outer radius to the dimensionless radius of 𝑟𝑒𝑝 

= 0.7552. Table (5) shows the unknown constants, 𝐶i, in the elastic and plastic regions, as well 

as the radius of the elastoplastic region 𝑟𝑒𝑝. 

 
4 Conclusion 

 

In this paper, in order to investigate the effects of different parameters on the initiation of 

yielding of a variable-thickness rotating disk made of functionally graded materials, an 

elastoplastic analytical study based on Tresca's criterion has been carried out. The thickness of 

the disk cross section, modulus of elasticity, density, and yield stress, are assumed to be 

exponential functions of radial coordinate. An elastic-perfectly-plastic model has also been 

used, ignoring strain hardening. The obtained results clearly show the importance of taking 

variation of the thickness into account. In addition, realizing the fact that the yield point of a 

homogeneous disk always starts at the inner radius, different states of yielding initiation and 

the process of expanding the flow of plastic into the rotating disk were researched. 
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Nomenclature 
 
 

Radially dimensionless coordinate 𝑟̅ 

Inner-outer radius of the disk (m) 𝑎, 𝑏 

Physically and geometrically dimensionless constants δ𝐸 , δ𝜌, δ𝜎 ,  δ𝑡 

Materially and geometrically dimensionless parameters 𝑛𝐸 , n𝜌, n𝜎,  n𝑡 

Young's modulus (Young's external radius) (Pa) 𝐸(𝐸0) 

Integrating constants 𝐶𝑖 

Radial displacement (radially dimensionless displacement) (m) 𝑢(𝑢̅) 

Cross-section thickness (Cross-section thickness of outer radius) (m) ℎ(ℎ0) 

Coordinates in cylindrical coordinates system 𝑟, 𝜃, 𝑧 

 
 

 

Greek symbols 
 

 

Density (density in the outer radius) kgm-3 𝜌(𝜌0) 

The component of stress (dimensionless stress component) (Pa) 𝜎(𝜎̅𝑖) 

Yielding stress component in external radius 𝜎𝑌0 

Poisson's ratio 𝜈 

Angular velocity (dimensionless angular velocity) (𝑟 / 𝑠) 𝜔(𝛺) 

Dimensionless variable depending on Tresca's criterion 𝛹 

Strain components 𝜀𝑖 

 


