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1 Introduction 

 

Direct numerical simulation (DNS)  of turbulent flows, which resolves all temporal and spatial 

flow scales, demands a substantial number of grid points and is practically infeasible for 

numerical simulation of high Reynolds number flows [1]. Hence, turbulence modelling is often 

invoked for simulation of industrial turbulent flows. Two main modelling approaches are 

practically used, namely Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation 
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Subgrid-scale Flux Modeling of a 
Passive Scalar in Turbulent Channel 
Flow using Artificial Neural Network 
A deep neural network (DNN) has been developed to model the 

subgrid-scale (SGS) flux associated with a passive scalar in 

incompressible turbulent channel flow. To construct the training 

dataset for the DNN, a direct numerical simulation (DNS) was 

performed for a channel flow at the friction Reynolds number 𝑅𝑒𝜏 =

179 encompassing a passive scalar transport with Prandtl number 

𝑃𝑟 = 0.71 using a pseudo-spectral in-house code. The DNS data of 

velocity and scalar fields was filtered to obtain the SGS scalar flux 

vector, 𝑞𝑖, filtered scalar gradient, and filtered strain-rate tensor, 

which were subsequently used to train the DNN, enabling it to predict 

𝑞𝑖 for large-eddy simulation. A priori evaluation of the DNN’s 

performance in predicting 𝑞𝑖 revealed a close match with filtered DNS 

data, demonstrating correlations of up to 98%, 79% and 85% for the 

three components of 𝑞𝑖. Additionally, analysis of the mean SGS 

dissipation and its probability density function indicated promising 

predictions by the DNN. Notably, this study extends the applications 

of DNNs for predicting 𝑞𝑖 to the case of turbulent channel flow. 
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(LES). In RANS, all turbulence is modelled and only statistics are predicted, whereas, only the 

small-scales need to be modelled in LES and the relevant large scales are computed. Hence, 

LES can also provide instantaneous turbulent flow fields and is computationally less expensive 

compared with the DNS. Modelling of subgrid-scale (SGS) quantities in LES is a challenging 

task, which has always been in the focus of research in LES [2]. 

Machine learning techniques have shown interesting capabilities for the extraction of data 

features and correlations for fluid mechanics applications [3]. They have also recently been 

employed for turbulence modeling applications, both in RANS [4] and LES [5]. In the context 

of LES, artificial neural-network (ANN) architectures have been employed for prediction of 

unknown SGS quantities from the known resolved ones. In LES, ANN-based architectures have 

been used for both direct modelling of the SGS stress and scalar flux and also computation of 

SGS model parameters as data-informed closure models. The work by Gamahara et al. [5], 

where an ANN was trained using filtered data obtained from DNS of turbulent channel flow to 

predict SGS stresses is an example of direct modelling of the SGS stresses. The influence of 

input parameters on the correlation of ANN-predictions with those of the filtered DNS data 

were examined using a priori tests for the plane channel flow. Dependence of ANN predictions 

on the input parameters was examined by Wang et al. [6], where filtered velocity components 

and their first and second derivatives were used.  

Artificial neural networks have been utilized for predicting SGS scalar fluxes in turbulent flows 

involving passive scalar transport. Vollant et al. [7] used optimal estimation theory to identify 

the most accurate input parameters for training an ANN to predict SGS scalar flux vector in 

forced homogeneous isotropic turbulence (HIT).  

Milani et al. [8] used data from filtered DNS of a jet in cross flow to train a deep neural network 

(DNN) incorporating embedded coordinate frame invariance. The DNN was utilized for 

predicting the sub-grid scale (SGS) scalar flux using a tensorial eddy-diffusivity model.  

Bode et al. [9] used filtered DNS data from homogeneous isotropic turbulence to train an ANN 

for prediction of SGS scalar dissipation. Frezat et al. [10] used physical invariances, such as 

translational, rotational and Galilean invariance, to improve ANN prediction of SGS scalar flux 

vector in forced HIT. Akhavan-Safaei and Zayernouri [11] also used ANN for modeling of the 

SGS scalar flux using filtered DNS data of HIT with a uniform mean scalar gradient. They 

showed that their ANN outperforms traditional SGS models based on the gradient-diffusion 

hypothesis.  

While numerous studies have tackled the prediction of SGS scalar flux vector using ANN, these 

applications have primarily focused on the forced HIT. In the current investigation, a DNN is 

trained for the prediction of the SGS scalar flux vector in turbulent channel flow with the 

transport of a scalar. The current test case is different from the previous studies in that it 

comprises an inhomogeneous direction and wall effects, which makes the prediction of SGS 

quantities more challenging. 

The rest of the paper is organized as follows. In section (2), governing equations and definition 

of SGS scalar flux are described. Numerical method and simulation details of the DNS is given 

in section (3). Filtering of the training data set for the DNN and computation of the SGS scalar 

flux vector are described in section (4). Architecture of the employed ANN is introduced in 

section (5). Results and discussions are given in section (6), followed by concluding remarks 

in section (7). 

 

2 Governing equations of a passive scalar in LES and definition of subgrid-scale flux  

 

The LES equations are derived by filtering the governing equations of fluid motion and scalar 

transport. A general conserved passive scalar, 𝜃, has the following convection diffusion 

governing equation [10]. 



Amin Rasam & Mehran Shirazi                                                                                                                            159 

The Iranian Journal of Mechanical Engineering Transactions of ISME                                    Vol. 24, No.  2, 2023 

 

𝝏𝜽

𝝏𝒕
+ 𝒖𝒋

𝝏𝜽

𝝏𝒙𝒋
=

𝟏

𝑹𝒆𝑷𝒓
 

 𝝏𝟐𝜽

𝝏𝒙𝒋𝝏𝒙𝒋
,   (1) 

 
where, 𝒖𝒋 denotes the velocity vector, 𝑹𝒆 is the Reynolds number, 𝑷𝒓 is the Prandtl number, 

𝒙𝒋 is the coordinate system and 𝒕 denotes time. Summation convention over the repeated indices 

is implied in this equation and is used in the proceeding equations. It has to be mentioned that 

Eq. (1) is not related to and does not influence the Navier-Stokes equations, since 𝜽 is a passive 

scalar. A passive scalar does not influence the fluid flow. Examples of a passive scalar are the 

concentration of a substance in the flow or temperature in a weakly heated flow [12]. Filtering 

the above equation leads to the following transport equation for LES 

 

𝜕𝜃

𝜕𝑡
+ 𝑢𝑗

𝜕𝜃

𝜕𝑥𝑗
=

1

𝑅𝑒𝑃𝑟
 

 𝜕2𝜃

𝜕𝑥𝑗𝜕𝑥𝑗
−

𝜕𝑞𝑗

𝜕𝑥𝑗
 , 

𝑞𝑗 = 𝑢𝑗𝜃 − 𝑢𝑗𝜃. 

(2) 

 
In this context,  .   represents a filtered quantity and 𝒒𝒋 is the SGS scalar flux. This is an unknown 

vector quantity that requires modeling to close the equation for the scalar. Modelling the 𝒒𝒋 is 

the subject of the current study. 

Another quantity of interest, is the resolved scalar intensity, 𝑲𝜽 = 𝜽𝟐/2, which has the 

following transport equation [2]. 
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(𝒒𝒋𝜽 ) + 𝝌,  

𝝌 = 𝒒𝒋

𝝏𝜽

𝝏𝒙𝒋
. 

(3) 

 

Here, 𝝌 is called the SGS scalar dissipation and is the rate at which resolved scalar intensity is 

transferred from the resolved to the SGSs. It depends on the 𝒒𝒋 prediction and a successful LES 

relies on its correct prediction. 

 

3 Numerical method and simulation 

 

The SIMSON code [13], which is a pseudo-spectral method is used to perform a DNS of 

incompressible turbulent channel flow. The code is based on the method used in reference [14]. 

Transport equations are solved for the wall-normal velocity, 𝒗, and vorticity, 𝝎. These 

equations, expressed in non-dimensional form, are written as  

 
𝜕

𝜕𝑡
∇2𝑣 = ℎ𝑣 +

1

𝑅𝑒
∇4𝑣,    

𝜕𝜔

𝜕𝑡
= ℎ𝜔 +

1

𝑅𝑒
∇2𝜔, (4) 

 

where, 

 

ℎ𝑣 = −
𝜕

𝜕𝑦
(

𝜕𝐻1

𝜕𝑥
+

𝜕𝐻3

𝜕𝑧
) + (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑧2
) 𝐻2,   ℎ𝜔 =

𝜕𝐻1

𝜕𝑧
−

𝜕𝐻3

𝜕𝑥
, 𝐻𝑖 = 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

, 𝑖 = 1,2,3. (5) 
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Figure 1 Geometry of the channel flow with a prescribed pressure gradient 

 

 
 

 

 

The Reynolds number 𝑅𝑒𝑏 =
𝑢𝑏𝛿

𝜈⁄  is based on the bulk velocity, 𝑢𝑏 . Here, 𝜈 is the kinematic 

viscosity and 𝛿 is the channel half height. The channel flow schematic is illustrated in 

Figure )1). Fourier representation is used for the spatial discretization in the x and z directions. 

Chebyshev polynomials are employed for the discretization in wall-normal direction. Aliasing 

errors are removed using the 3/2-rule [15]. The time integration of the nonlinear terms is based  

on a third-order Runge-Kutta method, whereas the time discretization for the linear terms uses 

the Crank-Nicolson scheme. Additional information regarding the numerical approach can be 

seen in reference [13]. 

The domain size in the x, y and z directions are 𝐿𝑥 = 8𝜋𝛿, 𝐿𝑦 = 2𝛿 and 𝐿𝑧 = 3πδ, respectively, 

see Figure )1). The corresponding number of grid points are 𝑁𝑥 = 384, 𝑁𝑦 = 129 and 𝑁𝑧 =

384, leading to the following grid sizes in wall units: 

 

Δ𝑥+ =
𝑢𝜏Δx

ν
= 11.81, Δ𝑦+ =

𝑢𝜏Δy

ν
= 0.05 ∼ 4.4, Δ𝑧+ =

𝑢𝜏Δz

ν
= 4.4. (6) 

 

Here, Δ𝑥, Δy and Δ𝑧 are the grid spacings and 𝑢𝜏 = √𝜏𝑤𝑎𝑙𝑙/𝜌  is the friction velocity, where 

𝜏𝑤𝑎𝑙𝑙 is the wall shear stress and 𝜌 is the fluid density. No-slip boundary condition at the walls 

and periodic boundary condition in the horizontal directions are employed. Simulations are 

performed at Reb = 2800 resulting in the friction Reynolds number Reτ = 𝑢𝜏𝛿 𝜈⁄ ≈ 179. The 

transport equation (1) is also solved for a passive scalar, 𝜃 with 𝑃𝑟 = 0.71. A constant 𝜃 

boundary condition with 𝜃 = 0 and 1 at the lower and upper walls, respectively, is employed. 

In the proceeding sections, 〈. 〉 denotes averaging of turbulence statistics in the homogeneous x 

and z directions. A quantity expressed in wall units, denoted by a + sign, as in Eq. (6), is non-

dimensionalized with either 𝑢𝜏 and 𝜈 or the scalar gradient at the wall and the diffusion 

coefficient. Averaging is only performed over one velocity and scalar field, which was found to 

be adequate for the objectives of the current study. A verification of the employed numerical 

method, for DNS and LES of turbulent channel flows and boundary layers can be found in ref. 

[13, 16, 17]. A validation of the current DNS predictions of the mean velocity profile and 

turbulent kinetic energy is presented in the following.  
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A comparison of the mean velocity, 〈𝑢〉+, in wall units, between the current DNS prediction and 

the reference DNS prediction of Moser et al. [18], at the same 𝑅𝑒𝜏, and the law of the wall is 

given in Figure (2a). It is observed that the current DNS predictions of 〈𝑢〉+ are in excellent 

agreement with the reference DNS, across the whole channel height. The prediction also 

follows the linear velocity profile in the viscous sublayer, 𝑦+ < 5, and the logarithmic law of 

the wall for 𝑦+ > 30. The turbulent kinetic energy (TKE) in wall units, 〈𝐾〉+, is also presented 

in Figure (2b) is compared with the DNS prediction of Moser et al. [18], where also excellent 

agreement between the two DNSs are observed. 

A snapshot of the instantaneous scalar, 𝜃, in an 𝑥 − 𝑦 plane is given in Figure (3), to provide 

an overview of the scalar transfer phenomena and its dynamics in the current DNS. Figure 

shows inclined instantaneous flow structures highlighted by the iso-contours of the scalar. 

A comparison of the mean scalar in wall units, 〈θ〉+, and the mean scalar intensity in wall units, 
〈Kθ〉+, is given in Figure (4a) and (4b) , between the current DNS and those of reference [19]. 

Since the reference DNS is at a different Reynolds number, i.e., 𝑅𝑒𝜏 ≈ 150,  the predictions 

are slightly different for 〈𝜃〉+ close to the channel center, see Figure (4a). Predictions of 〈𝐾𝜃〉+ 

are similar for 𝑦+ < 25 for both DNSs, although each has a different Reynolds number. 

Predictions become significantly different for 𝑦+ > 25, see Figure (4b). However, a similar 

trend between the current and reference predictions is observed in the two figures. It has to be 

pointed out that suitable DNS data for the current test case was not found for the scalar in the 

open literature. Hence, the current comparison for the scalar predictions with literature at a 

lower Reynolds number is only qualitative. 

 

 
 

(a)                                                                                                  (b)   
Figure 2 Mean streamwise velocity, 〈𝑢〉+, (a) and TKE, 〈𝑘〉+, (b) for the reference DNS (red solid line) 

and current DNS (black solid line), expressed in wall units. For clarity, the reference DNS [18] is only 

plotted for half of the channel height. The law of the wall for the logarithmic region is denoted by 〈𝑢〉+ =
1

𝜅
𝑙𝑜𝑔 𝑦+ + 𝐵, where 𝜅 = 0.41 and 𝐵 = 5.8 and for the viscous sublayer is denoted by 〈𝑢〉+ = 𝑦+. 

 
Figure 3 A snapshot of the instantaneous scalar field, 𝜃, for the current DNS in an x-y plane. 
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4 Filtering of the training dataset and computation of subgrid-scale scalar flux 

 

Filtering of the dataset is carried out using a top-hat (box) filter. The filtering operation employs 

the following convolution integral [2]. 

 

 

where, 𝒇  is the function to be filtered, the kernel of the filter is dented by 𝑮𝚫 , 𝚫 is the size of 

the filter and 𝑫 is the domain of integration. The employed filter has the following discrete 

formulation 
 

 

where, 𝑛 =
Δ

Δ
  is the filter to grid size ratio and 𝑓𝑖  is a function of interest at a discrete position. 

The filters are applied in the horizontal plane (x-z), as is common in LES of turbulent channel 

flow with non-uniform grids in the wall-normal direction. Filtering in the wall-normal direction 

in physical space using the employed top hat filter should be avoided, since it violates the 

continuity equation, due to the non-uniform grid spacing in that direction [20-23]. 

 The filter is applied to a single flow and scalar field of the DNS database, which 

comprise 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧  grid points, equal to 384 × 129 × 384 = 19,021,829. The volume 

of the data is found to be sufficient for the purpose of the training of the DNN. It has to be 

pointed out that a sharp spectral filter has also been employed for preparation of the training 

data. But it led to lower correlations between the DNN predictions and the filtered DNS data, 

compared with the top hat filter. Hence, the top hat filter was chosen for this study. Furthermore, 

time filtering has not been performed in obtaining the resolved and SGS quantities in the current 

study. Finally, it has to be pointed out that the de-aliasing, performed in the DNS code does not 

affect the current filtering. In fact, the effect that de-aliasing has on LES in a pseudo-spectral 

  
 

 (a)                                                                                         (b)  
Figure 4 Comparison of the mean scalar in wall units, 〈𝜃〉+, (a) and mean scalar intensity in wall units, 〈𝐾𝜃〉+, 

(b) between the current DNS at 𝑅𝑒𝜏 ≈ 179 and reference DNS [2] at 𝑅𝑒𝜏 ≈ 150. 

 

𝒇(𝒙) = ∫ 𝒇(𝒑)𝑮𝚫
(𝒙 − 𝒑)𝒅𝒑,

 

𝑫

 (7) 
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method is very limited, even at coarse resolutions, see e.g. [17].  Since only a priori analysis is 

performed in the current study, further investigation of this matter is not performed here. 

To compute the SGS scalar flux, 𝑞𝑖, the filtered velocity 𝑢𝑖, filtered scalar, 𝜃, and the filtered 

product 𝑢𝑖𝜃 are first computed using the filtering operation in Eq. (8). Then, 𝑞𝑖 is computed 

using Eq. (2). The velocity-gradient tensor 𝜕𝑢𝑖 𝜕𝑥𝑗⁄  and scalar-gradient vector 𝜕𝜃 𝜕𝑥𝑗⁄  are 

computed by differentiating the velocity and scalar fields in the Fourier space. The Fourier 

transformation is performed using the fast Fourier transform algorithm. Then, the resolved 

(filtered) velocity gradient,  𝜕𝑢𝑖 𝜕𝑥𝑗⁄  and resolved scalar-gradient vector, 𝜕𝜃 𝜕𝑥𝑗⁄   are 

computed using Eq. (8). 

 

5 Architecture of the artificial neural network 

 

Figure (5) illustrates the schematic of the employed artificial neural network (ANN). The ANN 

is constructed as a deep neural network (DNN), using the Keras API and the Tensor Flow [24].  

It consists of input and output layers and two hidden ones, each with 128 neurons. Two 

activation functions, namely the Re Fiectified Linear Unit (ReLU) and Sigmoid [25] are tested 

for the hidden layers, whereas the output layer uses a linear activation function. The 

backpropagation algorithm together with Adam optimization algorithm [26] is used for the 

DNN. The selection of the number of hidden layers and neurons aligns with the 

recommendations outlined in the referenced literature [20]. Weights and biases of each layer is 

iteratively updated and corrected during the learning process. The loss function is formulated 

using mean absolute error (MAE), as expressed below: 

 

𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛 = (
1

𝑚
 ) ∑|(𝑌𝑖 − 𝑌�̂�)|,

𝑚

𝑖=1

 (9) 

 
where 𝑚 is the number of samples, 𝑌𝑖 is the DNN output value and 𝑌�̂� represents the exact value 

of the output. 

 

 
Figure 5 Schematic of the employed DNN 
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To train the DNN, DNS data is filtered, as explained in the previous section. Six different cases 

are considered, each provide different weights and biases. These cases are given in Table (1). 

The filtered DNS dataset is further divided to training (80%) and testing datasets (20%). The 

training dataset consists of 80% and the testing dataset includes 20% of the filtered DNS dataset, 

which are randomly chosen. The training and testing datasets undergo normalization to achieve 

zero mean and unit variance, a process known to enhance the convergence rate of the training 

[10]. The Typical loss curves for the training and testing data is provided in Figure (6). 

The DNN has 9 inputs, which include the filtered strain-rate tensor, 𝑆𝑖𝑗, and scalar gradient 

vector 𝜕𝜃 𝜕𝑥𝑗⁄  as 

 

X1−9 = {𝑆11, 𝑆12, 𝑆13, 𝑆22, 𝑆23, 𝑆33,
𝜕𝜃

𝜕𝑥1
,

𝜕𝜃

𝜕𝑥2
,

𝜕𝜃

𝜕𝑥3
} (10) 

 

where, 𝑆𝑖𝑗 is a symmetric tensor defined as  

  

S𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
  +

𝜕𝑢𝑗

𝜕𝑥𝑖
). (11) 

 
Here, velocity gradients are computed in Fourier space. This choice of input parameters is based 

on the findings of Vollant et al. [7] for DNN predictions of SGS scalar flux for the case of HIT.  

To assess the accuracy of the DNN-predicted 𝑞𝑖, denoted by 𝑞𝑖
𝐷𝑁𝑁, correlation coefficients 𝐶𝐶𝑖 

between 𝑞𝑖
𝐷𝑁𝑁  and the SGS scalar flux vector obtained from the filtered DNS data, denoted by 

𝑞𝑖
𝐷𝑁𝑆, are computed using the following formulation 

 

𝐶𝐶𝑖 =
〈(𝑞𝑖

𝐷𝑁𝑆 − 〈𝑞𝑖
𝐷𝑁𝑆〉 )(𝑞𝑖

𝐷𝑁𝑁 − 〈𝑞𝑖
𝐷𝑁𝑁〉 )〉

[〈(𝑞𝑖
𝐷𝑁𝑆 − 〈𝑞𝑖

𝐷𝑁𝑆〉 )
2

〉 ]
0.5

[〈(𝑞𝑖
𝐷𝑁𝑁 − 〈𝑞𝑖

𝐷𝑁𝑁〉 )2〉]0.5

 ,    𝑖 = 1,2,3 (12) 

 

 
Figure 6 Training and testing loss curves for the current DNN of case D4, see Table (1). 
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Table 1 Effect of the DNN configuration, filter size and type on the correlation coefficient between 𝑞𝑖
𝐷𝑁𝑁 and 

𝑞𝑖
𝐷𝑁𝑆, i.e., 𝐶𝐶1, 𝐶𝐶2 and  𝐶𝐶3. 

 

case 
Number of 

hidden 
layers 

CC1 CC2 CC3 
Activation 
functions 

Number 
of 

neurons 

Filter 
size 

(
KSGS

K
) 

% 

D1 1 0.9200 0.6337 0.6710 

ReLu 

128 

8Δ 26.08 D2 2 0.9256 0.6668 0.7004 

D3 3 0.9273 0.6772 0.7082 

D4 2 0.9231 0.6552 0.6905 Sigmoid 4Δ 12.11 

D5 2 0.9683 0.7463 0.8031 ReLu 4Δ 12.11 

D6 2 0.9871 0.7937 0.8509 ReLu 2Δ 5.23 
 

 
Obviously, a higher correlation coefficient indicates a 𝑞𝑖

𝐷𝑁𝑁  that more closely follows the 

𝑞𝑖
𝐷𝑁𝑆 predicted by the filtered DNS data. The predicted 𝐶𝐶𝑖 are provided in Table (1). It can be 

observed that 𝐶𝐶1 is always higher than 0.92, whereas 𝐶𝐶2 and 𝐶𝐶3 are always larger than 0.69. 

This observation indicates that prediction of q1, which is an order of magnitude larger than q2, 

is easier for the DNN. In the current simulations, the mean SGS scalar flux in the spanwise 

direction, 〈q3〉,  is zero. This is due to the absence of the mean scalar transport and scalar 

gradient in the z direction. Hence, 〈q3〉 is also not presented and discussed hereafter. However, 

the 𝐶𝐶3 can be computed due to the non-zero 𝑞3 fluctuations and are presented in Table (1). 

To quantify the effect of the filter size on the SGS content, the ratio of the SGS TKE to the total 

TKE, i.e., 𝐾𝑆𝐺𝑆/𝐾, is given in percentage in Table (1). It can be observed that 𝐾𝑆𝐺𝑆/𝐾 % lies 

between 5.23 and 26.08 percent for 2Δ ≤ 𝑛 ≤ 8Δ. 
The filter size ratio, 𝑛 has a significant impact on the performance of the DNN. Comparing 

cases D2, D5, and D6 with 𝑛 = 8, 4 and 2, respectively, which have the same DNN 

configuration but the filter size varies, one can find out that the highest correlation coefficients 

are obtained for the lowest 𝑛, showing that a closer relation between the inputs and outputs of 

the DNN exist at lower filter size ratios. However, since 𝑛 = 4 is closer to practical LES 

resolutions [17], it is chosen for the final training of the DNN and the results presented in the 

next section.  

Exploring the impact of the number of hidden layers on the predicted SGS scalar flux in cases 

D1, D2, and D3 reveals that increasing the number of hidden layers, from one in case D1 to 

two in case D2, and subsequently to three in case D3, results in an augmentation of the 

correlation coefficient 𝐶𝐶𝑖. However, a fair prediction of 𝑞𝑖 can be obtained with two hidden 

layers, which is also in correspondence with the findings of ref. [20] for the prediction of SGS 

stresses in a similar test case using DNN. 

A comparison between the ReLU and Sigmoid activation functions in cases D4 and D5 shows 

that the ReLU function for the hidden layers gives higher correlation values. Hence, it is chosen 

for the forthcoming DNN predictions. 

With these considerations, the DNN in case D5 with two hidden layers, ReLU activation 

parameter and filter size ratio 𝒏 = 𝟒 is used for the prediction of SGS scalar fluxes in the next 

section. A flow chart of the whole process of the SGS scalar flux computations is also given in 

Figure (7). 
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Figure 7 Flow chart showing the steps taken for the current computations 

 
6 Results and discussions 

Figure (8b) presents the mean SGS scalar fluxes in the streamwise and wall-normal directions, 

denoted as 〈𝑞1〉+ and 〈𝑞2〉+, respectively, predicted by the DNN and obtained from the filtered 

DNS data. Notably, 〈𝑞1〉+ exhibits a peak at the vicinity of the wall, demonstrating the 

turbulence transport of the scalar in this area. In contrast to 〈𝑞2〉+, 〈𝑞1〉+ cannot be modeled 

solely using the scalar gradient vector. Hence, SGS models relying on the well-known gradient-

diffusion hypothesis fail to predict this component [16]. As an example of such models, recall 

the eddy-diffusivity model with the following formulation 

 

𝑞𝑖 = −
𝜈𝑡

Prt 
 
𝜕𝜃

𝜕𝑥𝑖
 (13) 

 
where, 𝜈𝑡 and 𝑃𝑟𝑡 are the SGS eddy viscosity and SGS turbulent Prandtl number, respectively, 

which are model parameters. Since the mean scalar gradient in the streamwise direction, i.e., 

〈𝜕𝜃/𝜕𝑥1〉 = 0, is zero in the current turbulent channel flow, such models predict 〈𝑞_1〉 = 0, 

whereas it has a significant value at the vicinity of the wall, as was already described. In contrast 

to such models, the DNN performs well in prediction of 〈𝑞1〉+, with a close agreement with the 

filtered DNS data with a small under-prediction of the near-wall peak value, see Figure (8a) 

and (8b). The DNN also gives a reasonable prediction of 〈𝑞2〉+ in Figure (8b).  

                                                   

               .)   

          

                    

                           . )   

           

                  . )  

                                                              )         

                                                       . )    
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(a)                                                                                  (b) 

Figure 9 A comparison of the mean SGS dissipation of scalar in wall units, 〈𝜒〉+(a) and its probability 

distribution function (PDF) at 𝑦+ ≈ 12 (b), between the DNN predictions and filtered DNS data. 

 

There is a close correspondence for  
𝑦

𝛿
< 0.2, between the DNN prediction and filtered DNS 

data, whereas the DNN underpredicts 〈𝑞2〉+ by approximately 13% in the middle of the channel. 

A quantity of major importance in SGS modeling of the passive scalar, is the SGS dissipation, 

𝜒, of the scalar intensity, 𝐾𝜃, explained in section (2), where the governing equation for 𝐾𝜃was 

given in Eq. (3). The mean SGS scalar dissipation in wall units, 〈𝜒〉+ is given in Figure (9a) and 

(9b) which compares the DNN prediction with the data obtained from the filtered DNS scalar 

filed. Although 〈𝜒〉 is always negative in wall-bounded flows, hence, 〈𝐾𝜃 〉 is transferred to the 

SGS scales from the resolved ones by the action of 𝜒, it can instantaneously become positive. 

Obviously, 𝐾𝜃 is transferred from the SGS scales to the resolved ones, when 𝜒 is positive, which 

is a well-known phenomenon.  

Therefore, 𝐾𝜃 can also be transferred instantaneously from the SGSs to the resolved scales. A 

negative 𝜒 is termed forward scatter of 𝐾𝜃, denoted by 𝜒𝐹 and a positive 𝜒 is called backscatter 

of 𝐾𝜃, denoted by 𝜒𝐵. To find out the performance of the DNN in the prediction of SGS scalar 

dissipation, a comparison between the DNN predictions of 𝜒, 𝜒𝐹 and 𝜒𝐵 with filtered DNS 
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(a)                                                                              (b) 

Figure 8 Comparison of the mean streamwise 〈𝑞1〉+(a) and wall-normal  〈𝑞2〉+ (b) SGS scalar fluxes in wall 

units, between the DNN predictions and filtered DNS data. 
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values is given in Figure (9) for the mean values. One should note that the following relation 

between the SGS dissipation and its forward- and backscatter holds. 

 
 

χ = χF + 𝜒𝐵 (14) 

 
A peak in 〈𝜒〉+ exists close to the wall, where 𝐾𝜃 also has a peak (Figure not shown). One can 

observe that the DNN over-predicts both  𝜒𝐹 and 𝜒𝐵 and under-predicts 𝜒, compared with the 

filtered DNS data, for 
𝑦

𝛿
< 0.5. However, its prediction of 𝜒𝐹 reasonably follows 𝜒 of the filtered 

DNS. It has to be mentioned that backscatter, which is the transfer of 𝐾𝜃 from the SGS to the 

resolved scales, may lead to instability in the numerical simulations. Hence, it would be 

appropriate to limit the backscatter, i.e., 𝜒𝐵 , when the DNN is used to perform an LES. By 

doing that, reasonable 𝜒 predictions will be obtained, which is necessary for a successful LES. 

It has to be pointed out that most SGS models do not take into account the SGS backscatter. 

Recently, the importance of including the SGS backscatter of energy has been discussed for the 

SGS stress models for LES of HIT, which shows that inclusion of backscatter in SGS models 

may not be necessary [27]. 

The probability density function (PDF) of 𝜒 is also presented in Figure (9b) at 𝑦+ ≈ 12 to 

comprehend the discussion. This 𝑦+is chosen at the vicinity of the peak of 𝐾𝜃 in the buffer 

layer, where the peak of turbulence activity lies. Hence, it is an important location for the 

analysis of SGS models. The PDF of 𝜒 is skewed towards negative values, as is expected [28], 

showing the tendency of negative SGS dissipation predictions and that the mean SGS 

dissipation is indeed negative. Figure shows that the PDF of the DNN-predicted 𝜒 is reasonably 

close to that of the filtered DNS. The positive tail is over-predicted by the DNN, which is in 

agreement with the over-prediction of 𝜒𝐵 by the DNN, presented earlier. 

It has to be pointed out that the noisy character of the tails of the PDF are due to the number of 

data points used to compute the PDF in Figure (9b). The PDF tails show the probability of more 

rare events, compared with the central part of the PDF, hence, less samples are available for 

plotting the PDF tails. Similar plots of the PDF of 𝜒 can be found in the literature, see e.g. [11].   

 

7 Concluding remarks 

 

A DNN was employed for the prediction of the SGS scalar flux vector for LES of turbulent 

channel flow. The test case is an important canonical test case for SGS model analysis. A DNS 

was performed at 𝑅𝑒𝜏 ≈ 179 with a scalar transport with 𝑃𝑟 = 0.71 using a highly accurate, 

very low dissipation pseudo-spectral method. The DNS data base was further filtered to obtain 

the data needed for training the DNN to predict the SGS scalar flux vector, 𝑞𝑖. The DNN was 

trained using over 19 million data points. The trained DNN was able to predict 𝑞𝑖 with 

correlations of its individual components with the filtered DNS data reaching up to 92%. The 

highest correlation coefficient was observed for the streamwise SGS scalar flux, 〈𝑞1〉. The DNN 

was also found to give excellent prediction of 〈𝑞1〉, a component that cannot be predicted by 

eddy-diffusivity SGS models. Reasonable prediction of the wall-normal SGS scalar flux, 〈𝑞2〉, 
compared with the filtered DNS data, was also observed, especially at the vicinity of the walls, 

where the peak of turbulence activity is located. 

A detailed analysis of the SGS dissipation of scalar intensity and its mean forward and 

backscatter was also provided and the results were compared with those of the filtered DNS 

data. This is a quantity of major interest in assessment of SGS model performance. The analysis 

was carried out both for the mean values and probability density function (PDF). It was 

observed that the DNN underpredicted the mean SGS dissipation, but its forward scatter was in 

reasonable agreement with the mean SGS dissipation obtained from filtered DNS data. Hence, 
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backscatter needs to be restricted, if an LES with the current DNN model is performed, as is 

the case for most other SGS models. The PDF of the SGS dissipation was discussed at a certain 

wall distance, in the buffer layer, which exhibited the expected skewed character and confirmed 

the findings observed for the mean SGS dissipation. 
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Nomenclature 
English Symbol 

𝐶𝐶𝑖  Correlation coefficient 
𝐾 Resolved turbulent kinetic energy 
𝐾𝜃 Resolved scalar intensity 
𝑛 Filter size ratio 
𝑁 Number of grid points 
𝑃𝑟 Prandtl number 
𝑞𝑖 Subgrid-scale scalar flux vector 
𝑅𝑒𝑏 Bulk Reynolds number 
𝑅𝑒𝜏 Friction Reynolds number 
t Time 
S Strain-rate tensor 
𝑢𝑏 Bulk velocity 
𝑢𝑖 Instantaneous velocity vector 
𝑢𝜏 Friction velocity 
v Wall-normal velocity 
𝑥𝑖 Coordinate system 
𝑥, 𝑦, 𝑧 Coordinate distance 
𝑋𝑖 Input 
𝑌𝑖 Output 

 

Subscripts 
 

𝑖 Coordinate direction 
x,y,z Coordinate direction 

 
 

Superscripts 
+ Wall units 

 

Greek symbols 
 

𝜃 Passive scalar 
𝜒 Subgrid-scale scalar dissipation 
𝜒𝐹 Forward scatter 
𝜒𝐵 Backscatter 
𝜔 Wall-normal vorticity 
𝜈 Kinematic viscosity 
𝜏 Shear stress 
𝜌 Density  
𝛿 Channel half height 
Δ Grid size 

Δ Filter size 
 

Abbreviations 
 

ANN Artificial neural network 
DNN Deep neural network 
DNS Direct numerical simulation 
MAE Mean absolute error 
LES Large-eddy simulation 
PDF Probability density function 
RANS Reynolds-averaged Navier-Stokes 
ReLU Rectified linear unit 
SGS Subgrid scale  
HIT Homogeneous isotropic turbulence 
TKE Turbulent kinetic energy 

 


