One Dimensional Internal Ballistics Simulation of Solid Rocket Motor

Document Type: Research Paper

Authors

Department of Mechanical and Aerospace Engineering, Malek e Ashtar University of Technology, Tehran, IRAN

Abstract

An internal ballistics model has been developed for performance prediction of a solid propellant rocket motor. In this model a 1-D unsteady Euler equation with source terms is considered. The flow is assumed as a non-reacting mixture of perfect gases with space and time varying thermo physical properties. The governing equations in the combustion chamber are solved numerically by using the Steger and Warming flux vector splitting scheme. After validation of results by experimental data, the effect of grain geometrical variables and solid propellant characteristics are studied on performance characteristics of a standard internal burning cylindrical grain. These parameters include of negative /positive erosive burning, propellant characteristics, port to throat area ratio and initial temperature of the propellant. The results of developed model show that, propellant characteristics are dominant factors which affect performance characteristics. When erosive burning rate are considered, the 1-D internal ballistic analysis have good agreement with experimental data.

Keywords

Main Subjects