Friction-Stir-Processing Effect on Fracture Toughness of Oil Pipelines in ST 37 Group Before/After Nano ZrO2-Coating

Document Type: Research Paper

Authors

1 Assistant Professor, Department of Mechanical Engineering, Petroleum University of Technology, Ahvaz Faculty, Iran

2 MSc, Petroleum University of Technology

3 Ph.D Student, Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran

Abstract

Herein, Compact-Testing (CT ) and Charpy V-Notch (CVN) testing have been done on four Friction-Stir-Processed (FSPed) samples: BM (Base-Metal), FS (FSPed-Sample), FN5 (FSP Nano-ZrO2-coated/560 rpm rotational speed) and FN9 (FSP Nano-ZrO2-coated/900 rpm), to investigate the KIC and the dominant parameters on it for St 37 steel. Experiments are also surveyed and validated by ABAQUS. Results showed the greatest KIC value for BM (CT: 110.40 /CVN: 98.72 MPa√m) and the least for FN9 (CT: 72.20/CVN: 60.08 MPa√m). FSP caused brittle behavior but not as much as FSP Nano-coating. The calculation of CT samples was done in Gerson theory by using of LEFM formulas. Investigations showed more reliability for CVN obtained results. The KIC and ductile fracture decreased after FSP for both CVN and CT.

Keywords

Main Subjects


[1]   Aktarer, S. M., Sekban, D. M., Saray, O., and Kucukomero, T., “Effect of Two-pass Friction Stir Processing on the Microstructure and Mechanical Properties of As-cast Binary Al–12Si Alloy”, Materials Science and Engineering, Vol. 636, pp. 311-319, (2015).

 

[2]   Anon, A., “Measure of Fracture Toughness E813-89”, 1st Edition, Annual Book of ASTM Standards, New York, pp. 241, (1991).

 

[3]   Beak, J. H., Kim, Y. P., Kim, C. M., and Seo, W. S., “Effect of Pre-strain on the Mechanical Properties of API X65 Pipe”, Material and Science, Vol. 30, pp. 1473-1479, (2010).

 

[4]   Miehe, C., “Phase Field Modeling of Fracture in Multi-physics Problems”, Computer Methods in Applied Mechanics and Engineering, Vol. 42, pp. 163-172, (2014).

 

[5]   Cui, L., “Friction Stir Welding of a High Carbon Steel”, Scripta Materialia, Vol. 56, pp. 637-638, (2007).

 

[6]   Mishra, R. S., Mahoney, M. W., McFadden, S. X., Mara, N. A., and Mukherjee, A. K., “High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy”, Scripta Materialia., Vol. 42, pp. 163–168, (2000).

 

[7]   Mishra, R. S., and Mahoney, M. W., “Low Temperature Superplasticity in a Friction-stir-processed Ultrafine Grained Al–Zn–Mg–Sc Alloy”, Materials  Science  Forum, Vols. 357–359, pp. 507–12, (2001).

 

[8]   Ma, Z. Y., Mishra, R. S., and Mahoney, M. W., “Effect of Friction Stir Processing on the Kinetics of Superplastic Deformation in an Al-Mg-Zr Alloy”, Acta Materialia, Vol. 50, pp. 4419–4430, (2002).

 

[9]   Mishra, R. S., Ma, Z. Y., and Charit, I., “High Strain Rate Superplasticity in a Commercial 2024 Al Alloy via Friction Stir Processing”, Materials Science and Engineering A, Vol. A341, pp. 307–310, (2002).

 

[10]    Berbon, P. B., Bingel, W. H., Mishra, R. S., Bampton, C. C., and Mahoney, M. W., “Surface Hardening of Two Cast Irons by Friction Stir Processing”, Scripta Materialia, Vol. 44, pp. 61–66, (2001).

 

[11]    Spowart, J. E., Ma, Z. Y., and Mishra, R. S., “Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy”, Friction Stir Welding and Processing II, Vol. 12, pp. 243–252, (2003).

 

[12]    Ma, Z. Y., Sharma, S. R., Mishra, R. S., and Mahoney, M. W., “High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy”, Materials Science Forum, Vol. 426-432, pp. 2891–2896, (2003).

 

[13]    Lee, C. J., Huang, J. C., and  Hsieh, P. J., “Mg Based Nano-composites Fabricated by Friction Stir Processing”, Scripta  Materialia, Vol. 54, pp. 1415–1420, (2006).

 

[14]    Morisada, Y., Fujii, H., Nagaoka, T., and Fukusumi, M., “Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium”, Materials Science Engineering A, Vol. A419, pp. 344–348, (2006).

 

[15]    Morisada, Y., Fujii, H., Nagaoka, T., and Fukusumi, M., “Effect of Friction Stir Processing with SiC Particles on Microstructure and Hardness of AZ31”, Materials Science and Engineering A, Vol. A433, pp. 50–54, (2006).

 

[16]    Dixit, M., Newkirk, J. W., and Mishra, R. S., “Properties of Friction Stir-processed Al 1100–NiTi Composite”, Scripta Materialia, Vol. 56, pp. 541–544, (2007).

 

[17]    Sharma, S. R., Ma, Z. Y., Mishra, R. S., and  Mahoney, M. W., “Microstructural Modification of As-cast Al-Si-Mg Alloy by Friction Stir Processing”, Scripta Materialia, Vol. 51, pp. 237–241, (2004).

 

[18]    Ma, Z. Y., Sharma, S. R., Mishra, R. S., and Mahoney, M. W., “Friction Stir Processing of SSM356 Aluminium Alloy”, Metallurgical and Materials Transactions A, Vol. 37A, pp. 3323–3336, (2006).

 

[19]    Ma, Z. Y., Sharma, S. R., and Mishra, R. S., “Effect of Friction Stir Processing on Fatigue Behavior of A356 Alloy”, Scripta Materialia, Vol. 54, pp. 1623–1626, (2006).

 

[20]    Oh-ishi, K., and McNelley, T. R., “Effect of Friction Stir Processing Procedures on Microstructure and Mechanical Properties of Mg-Al-Zn Casting”, Metallurgical and Materials Transactions A, Vol. 35A, pp. 2951–2961, (2004).

 

[21]    Feng, A. H., and Ma, Z. Y., “Inhomogeneous Microstructure and Mechanical Properties of Friction Stir Processed As-cast NiAl Bronze”, Scripta Materialia, Vol. 56, pp. 397–400, (2007).

 

[22]    Hsu, C. J., Kao, P. W., and Ho, N. J., “Particle-reinforced Aluminum Matrix Composites Produced from Powder Mixtures Via Friction Stir Processing”, Scripta Materialia, Vol. 53, pp. 341–345, (2005).

 

[23]    Chuang, C. H., Huang, J. C., and Hsieh, P. J., Using Friction Stir Processing to Fabricate MgAlZn Intermetallic Alloys”, Scripta Materialia, Vol. 53, pp. 1455–1460, (2005).

 

[24]    Hsu, C. J., Chang, C. Y., Kao, P. W., Ho, N. J., and Chang, C. P., “Al–Al3Ti Nanocomposites Produced in Situ by Friction Stir Processing”, Acta Materialia, Vol. 54, pp. 5241–5249, (2006).

 

[25]    Daghyani, H., and Khodayee, F., “Introductry to Fracture Mechanics of Materials”, M. Sc. Thesis, Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, (1379).

 

[26]    Hashemi, S. H., Rezaei, M., and Soleimani, V., “Local Damage Modeling of Ductile Fracture in API Pipeline Steels of Grade X65 and X70”, Proceeding of ISME2011, Vol. 2, pp. 44-52, (2011).

 

[27]    Hulka, K., “High Strength Large Diameter Pipe”, Plahttp://www.us.cbmm,com.br/ english/sources/techlib/info. [Online], (2006).

[28]    Hütter, G., Mühlich, U., and Kuna, M., “Simulation of Local Instabilities During Crack Propagation in the Ductile–brittle Transition Region”, Computer Methods in Applied Mechanics and Engineering, Vol. 23, pp. 141-156, (2014).

 

[29]    Hyunmin, K., Minju, K., Hyeok, J. J., and Hyoung, S., “Mechanisms of Toughness Improvement in Charpy Impact and Fracture Toughness Tests of Non-heat-treating Cold-drawn Steel Bar”, Materials Science and Engineering, Vol. 571, pp. 38-48, (2013).

 

[30]    Landes, J. D., and Begley, J. A., “The Effect of Specimen Geometry on JIC”, American Society for Testing and Materials (ASTM STP 514), Vol. 10, pp. 24-29, (1972).

 

[31]    Marandet, B., and Sanz, G., “Evaluation of the Toughness of Thick Medium-strength Steels by using Linear-elastic Fracture Mechanics and Correlations Between KIc and Charpy V-notch”, Flaw Growth and Fracture (ASTM STP 631), Vol. 10, pp. 121-132, (1977).

 

[32]    Pense, A. W., and Stout, R. D., “Fracture Toughness and Related Characteristics of the Steels”, 4th Edition, WRC Bulletin, New York, (1975).

 

[33]    Rezayi-Yekta, M., “Computer Simulation of Grooved Sample from API X65 Steel with Gerson Model”, MSc. Thesis, Department of Mechanical Engineering, Birjand University, Birjand, Iran, (1389).

 

[34]    Rothwell, A. B., “Fracture Propagation Control for Gas Pipelines”, Past, Present and Future Pipeline Technology, Vol. 1, pp. 386-397, (2000).

 

[35]    Su, J. Q., Nelson, T. W., Mishra, R., and Mahoney, M., “Friction Stir Processing of 7075 Al Alloy and Subsequent Aging Treatment”, Acta Materials, Vol. 51, pp. 713-729, (1970).

 

[36]    Wallin, K., “The Scatter in KIC-resu1ts”, Engineering Fracture Mechanics, Vol. 19, pp. 1085- 1093, (1984).

 

[37]    Wallin, K., “The Size Effect on KIC-results”, Engineering Fracture Mechanics, Vol. 22, pp. 149-163, (1985).

 

[38]    Wallin, K., and Lee, S. T., “Fracture Toughness Transition Curve Shape for Ferritic Structural Steels”, Fracture of Engineering Materials and Structures, Vol. 42, pp. 83-88, (1991).

 

[39]    Zerbst, U., Ainsworth, R. A., Beier, H. T., and Pisarsk, H., “Review on Fracture and Crack Propagation in Weldments–A Fracture Mechanics Perspective”, Engineering Fracture Mechanics, Vol. 132, pp. 200-276, (2014).

 

[40]    ABAQUS Version 6.4 User’s Manual,(2005).

 

[41]    Marsavina, M., Linul, E., Voiconi, T, and Sadowski, T. A., “Comparison Between Dynamic and Static Fracture Toughness of Polyurethane Foams”, Polymer Testing, Vol. 4, pp. 131-132, (2013).