Experimental Design by using Taguchi Method for Sensitivity Analysis of CuO/Deionized Water Nanofluid Properties

Document Type : Research Paper

Authors

1 Associate Professor, Energy Department, Materials and Energy Research Center (MERC), Energy Department, Solar Energy Group, Karaj, Iran

2 Professor, Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran

3 M.Sc., Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran

Abstract

In this research, the thermal conductivity and viscosity of nanofluids has been investigated. So, the best response for the highest thermal conductivity and the lowest viscosity, respectively have been checked. For this purpose, the effect of simultaneous use of CuO/Deionized Water nanofluids to evaluate the thermal conductivity and dynamic viscosity is investigated and analyzed. The focus of the work is to investigate the influence of different transport phenomena parameters by using CuO nanoparticles dispersed in Deionized water. Given that the signal-to-noise ratio has calculated from the Larger–the better relationship, therefore, it has be concluded that the thermal conductivity of nanofluid is higher at higher volume fractions and temperatures. Finally, in this condition, volume fraction of 0.4% and temperature of 40°C will be more suitable. On the other hand, Because of the signal-to-noise ratio has calculated from the smaller-the better relationship, therefore, it has be concluded that the dynamic viscosity of nanofluid is lower at lower volume fractions and higher temperature. And also, the volume fraction of 0.1% and the temperature of 33.3°C will be more suitable.

Keywords

Main Subjects


[1]        J. I. Prado, U. Calviño, and L. Lugo, "Experimental Methodology to Determine Thermal Conductivity of Nanofluids by using a Commercial Transient Hot-wire Device," Applied Sciences, Vol. 12, No. 1, p. 329, 2021, doi: https://doi.org/10.3390/app12010329.
 
[2]        M. J. Assael, K. D. Antoniadis, and W. A. Wakeham, "Historical Evolution of the Transient Hot-wire Technique," International Journal of Thermophysics, Vol. 31, pp. 1051-1072, 2010, doi: https://link.springer.com/article/10.1007/s10765-010-0814-9.
[3]        C. A. Nieto de Castro and M. J. V. Lourenço, "Towards the Correct Measurement of Thermal Conductivity of Ionic Melts and Nanofluids," Energies, Vol. 13, No. 1, p. 99, 2019, doi: http://doi.org/10.3390/en13010099.
 
[4]        A. Palacios, L. Cong, M. Navarro, Y. Ding, and C. Barreneche, "Thermal Conductivity Measurement Techniques for Characterizing Thermal Energy Storage Materials–A Review," Renewable and Sustainable Energy Reviews, Vol. 108, PP. 32-52, 2019, doi: https://linkinghub.elsevier.com/retrieve/pii/S1364032119301625.
 
[5]        N. Karthikeyan, J. Philip, and B. Raj, "Effect of Clustering on the Thermal Conductivity of Nanofluids," Materials Chemistry and Physics, Vol. 109, No. 1, pp. 50-55, 2008, doi: https://doi.org/10.1016/j.matchemphys.2007.10.029.
 
[6]        R. R. Riehl and S. Mancin, "Estimation of Thermophysical Properties for Accurate Numerical Simulation of Nanofluid Heat Transfer Applied to a Loop Heat Pipe," International Journal of Thermofluids, Vol. 14, p. 100158, 2022, doi: https://doi.org/10.1016/j.ijft.2022.100158.
 
[7]        H. Chen, Y. Ding, and C. Tan, "Rheological Behaviour of Nanofluids," New Journal of Physics, Vol. 9, No. 10, p. 367, 2007, doi: https://iopscience.iop.org/article/10.1088/1367-2630/9/10/367/meta.
 
[8]        G. Paul, M. Chopkar, I. Manna, and P. Das, "Techniques for Measuring the Thermal Conductivity of Nanofluids: A Review," Renewable and Sustainable Energy Reviews, Vol. 14, No. 7,PP. 1913-1924, 2010, doi: https://doi.org/10.1016/j.rser.2010.03.017.
 
[9]        X. Wang, X. Xu, and S. U. Choi, "Thermal Conductivity of Nanoparticle-fluid Mixture," Journal of Thermophysics and Heat Transfer, Vol. 13, No. 4, pp. 474-480, 1999, doi: http://dx.doi.org/10.2514/2.6486.
 
[10]      Y. Xuan and Q. Li, "Heat Transfer Enhancement of Nanofluids," International Journal of Heat and Fluid Flow, Vol. 21, No. 1, pp. 58-64, 2000, doi: https://doi.org/10.1016/S0142-727X(99)00067-3.
 
[11]      S. Choi, Z. G. Zhang, W. Yu, F. Lockwood, and E. Grulke, "Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions," Applied Physics Letters, Vol. 79, No. 14, pp. 2252-2254, 2001, doi: http://dx.doi.org/10.1063/1.1408272.
 
[12]      C. H. Li and G. Peterson, "Experimental Investigation of Temperature and Volume Fraction Variations on the Effective Thermal Conductivity of Nanoparticle Suspensions Nanofluids)," Journal of Applied Physics, Vol. 99, No. 8, 2006. doi:https://doi.org/10.1063/1.2191571.
 
[13]      S. Murshed, K. Leong, and C. Yang, "Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids," International Journal of Thermal Sciences, Vol. 44, No. 4, pp. 367-373, 2005, doi: https://doi.org/10.1016/j.ijthermalsci.2004.12.005.
 
[14]      D.-H. Yoo, K. Hong, and H.-S. Yang, "Study of Thermal Conductivity of Nanofluids for the Application of Heat Transfer Fluids," Thermochimica Acta, Vol. 455, No. 1-2, pp. 66-69, 2007, doi: https://doi.org/10.1016/j.tca.2006.12.006.
[15]      D. Wen and Y. Ding, "Formulation of Nanofluids for Natural Convective Heat Transfer Applications," International Journal of Heat and Fluid Flow, Vol. 26, No. 6, pp. 855-864, 2005, doi: https://doi.org/10.1016/j.ijheatfluidflow.2005.10.005.
 
[16]      H. Chen, Y. Ding, Y. He, and C. Tan, "Rheological Behaviour of Ethylene Glycol Based Titania Nanofluids," Chemical Physics Letters, Vol. 444, No. 4-6, pp. 333-337, 2007, doi: https://doi.org/10.1016/j.cplett.2007.07.046.
 
[17]      S. Murshed, K. Leong, and C. Yang, "Investigations of Thermal Conductivity and Viscosity of Nanofluids," International Journal of Thermal Sciences, Vol. 47, No. 5, pp. 560-568, 2008, doi: https://doi.org/10.1016/j.ijthermalsci.2007.05.004.
 
[18]      J. Philip and P. D. Shima, "Thermal Properties of Nanofluids," Advances in Colloid and Interface Science, Vol. 183, pp. 30-45, 2012, doi: http://doi.org/10.1016/j.cis.2012.08.001.
 
[19]      X.-j. Wang and D.-s. Zhu, "Investigation of pH and SDBS on Enhancement of Thermal Conductivity in Nanofluids," Chemical Physics Letters, Vol. 470, No. 1-3, pp. 107-111, 2009, doi: http://doi.org/10.1016/j.cplett.2009.01.035.
 
[20]      P. K. Das, "A Review Based on the Effect and Mechanism of Thermal Conductivity of Normal Nanofluids and Hybrid Nanofluids," Journal of Molecular Liquids, Vol. 240, pp. 420-446, 2017, doi: https://doi.org/10.1016/j.molliq.2017.05.071.
 
[21]      B. Buonomo, O. Manca, L. Marinelli, and S. Nardini, "Effect of Temperature and Sonication Time on Nanofluid Thermal Conductivity Measurements by Nano-flash Method," Applied Thermal Engineering, Vol. 91, pp. 181-190, 2015, doi: https://doi.org/10.1016/j.applthermaleng.2015.07.077.
 
[22]      I. Mahbubul, I. Shahrul, S. Khaleduzzaman, R. Saidur, M. Amalina, and A. Turgut, "Experimental Investigation on Effect of Ultrasonication Duration on Colloidal Dispersion and Thermophysical Properties of Alumina–water Nanofluid," International Journal of Heat and Mass Transfer, Vol. 88, pp. 73-81, 2015, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.048.
 
[23]      B. Lamas, B. Abreu, A. Fonseca, N. Martins, and M. Oliveira, "Critical Analysis of the Thermal Conductivity Models for CNT Based Nanofluids," International Journal of Thermal Sciences, Vol. 78, pp. 65-76, 2014, doi: https://doi.org/10.1016/j.ijthermalsci.2013.11.017.
 
[24]      Y. S. Ju, J. Kim, and M.-T. Hung, "Experimental Study of Heat Conduction in Aqueous Suspensions of Aluminum Oxide Nanoparticles," 2008, doi: https://doi.org/10.1115/1.2945886.
 
[25]      M. Kole and T. Dey, "Effect of Prolonged Ultrasonication on the Thermal Conductivity of ZnO–Ethylene Glycol Nanofluids," Thermochimica Acta, Vol. 535, pp. 58-65, 2012, doi: https://doi.org/10.1016/j.tca.2012.02.016.
 
[26]      J.-C. Yang, F.-C. Li, W.-W. Zhou, Y.-R. He, and B.-C. Jiang, "Experimental Investigation on the Thermal Conductivity and Shear Viscosity of Viscoelastic-fluid-based Nanofluids," International Journal of Heat and Mass Transfer, Vol. 55, No. 11-12, pp. 3160-3166, 2012, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.052.
 
[27]      H. Xie, M. Fujii, and X. Zhang, "Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle-fluid Mixture," International Journal of Heat and Mass Transfer, Vol. 48, No. 14, pp. 2926-2932, 2005, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.040.
 
[28]      J. Avsec and M. Oblak, "The Calculation of Thermal Conductivity, Viscosity and Thermodynamic Properties for Nanofluids on the Basis of Statistical Nanomechanics," International Journal of Heat and Mass Transfer, Vol. 50, No. 21-22, pp. 4331-4341, 2007, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.064.
 
[29]      B. C. Pak and Y. I. Cho, "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles," Experimental Heat Transfer an International Journal, Vol. 11, No. 2, pp. 151-170, 1998, doi: https://doi.org/10.1080/08916159808946559.
 
[30]      W. Yu and S. Choi, "The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model," Journal of Nanoparticle Research, Vol. 5, pp. 167-171, 2003, doi: https://doi.org/10.1023/A:1024438603801.
 
[31]      S. Mirian, G. Ansarifar, and M. Esteki, "Nanofluid Applications in Pressurized Water Reactors: A Review," International Journal of Energy Research, Vol. 46, No. 15, pp. 22314-22335, 2022, doi: https://doi.org/10.1002/er.8681.
 
[32]      M. Chandrasekar, S. Suresh, R. Srinivasan, and A. C. Bose, "New Analytical Models to Investigate Thermal Conductivity of Nanofluids," Journal of Nanoscience and Nanotechnology, Vol. 9, No. 1, pp. 533-538, 2009, doi: https://doi.org/10.1166/jnn.2009.J025.
 
[33]      M. Corcione, "Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids," Energy Conversion and Management, Vol. 52, No. 1, pp. 789-793, 2011, doi: https://doi.org/10.1016/j.enconman.2010.06.072.
 
[34]      [1]        P. K. Das, "A Review Based on the Effect and Mechanism of Thermal Conductivity of Normal Nanofluids and Hybrid Nanofluids," Journal of Molecular Liquids, Vol. 240, pp. 420-446, 2017, doi: https://doi.org/10.1016/j.molliq.2017.05.071.
 
[35]      B. Buonomo, O. Manca, L. Marinelli, and S. Nardini, "Effect of Temperature and Sonication Time on Nanofluid Thermal Conductivity Measurements by Nano-flash Method," Applied Thermal Engineering, Vol. 91, pp. 181-190, 2015, doi: https://doi.org/10.1016/j.applthermaleng.2015.07.077.
 
[36]      I. Mahbubul, I. Shahrul, S. Khaleduzzaman, R. Saidur, M. Amalina, and A. Turgut, "Experimental Investigation on Effect of Ultrasonication Duration on Colloidal Dispersion and Thermophysical Properties of Alumina–water Nanofluid," International Journal of Heat and Mass Transfer, Vol. 88, pp. 73-81, 2015, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.048.
 
[37]      B. Lamas, B. Abreu, A. Fonseca, N. Martins, and M. Oliveira, "Critical Analysis of the Thermal Conductivity Models for CNT Based Nanofluids," International Journal of Thermal Sciences, Vol. 78, pp. 65-76, 2014, doi: https://doi.org/10.1016/j.ijthermalsci.2013.11.017.
 
[38]      Y. S. Ju, J. Kim, and M.-T. Hung, "Experimental Study of Heat Conduction in Aqueous Suspensions of Aluminum Oxide Nanoparticles," 2008, doi: https://doi.org/10.1115/1.2945886.
 
[39]      M. Kole and T. Dey, "Effect of Prolonged Ultrasonication on the Thermal Conductivity of ZnO–ethylene Glycol Nanofluids," Thermochimica Acta, Vol. 535, pp. 58-65, 2012, doi: https://doi.org/10.1016/j.tca.2012.02.016.
 
[40]      J.-C. Yang, F.-C. Li, W.-W. Zhou, Y.-R. He, and B.-C. Jiang, "Experimental Investigation on the Thermal Conductivity and Shear Viscosity of Viscoelastic-fluid-based Nanofluids," International Journal of Heat and Mass Transfer, Vol. 55, No. 11-12, pp. 3160-3166, 2012, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.052.
 
[41]      T.-K. Hong, H.-S. Yang, and C. Choi, "Study of the Enhanced Thermal Conductivity of Fe Nanofluids," Journal of Applied Physics, Vol. 97, No. 6, 2005, doi: https://doi.org/10.1063/1.1861145.
 
[42]      [1]        K. Krishnaiah and P. Shahabudeen, Applied Design of Experiments and Taguchi Methods. PHI Learning Pvt. Ltd., 2012, https://eko.staff.uns.ac.id/files/2014/09/Buku-Alternatif.pdf.