Fuel Consumption Minimization in Greenhouses by Employing an Innovative System Taking Advantage of Solar and Geothermal Energies

Document Type : Research Paper


1 Young Researchers and Elite Club, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran

2 Department of Mechanical Engineering, Minoodasht Branch, Islamic Azad University, Minoodasht

3 Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran


Replacing fossil flues by renewable and sustainable energies have been the concern of scientists working in this area over the recent decades. Furthermore, greenhouses play a key role in producing various crops year-round and in bohemian climates. For this objective, the greenhouses employ heating, ventilating and air conditioning (HVAC) systems to provide the favourable conditions for the considered crop. At the moment, generally, the heating demand of greenhouses is provided by air heaters which burn gasoil as their main fuel. In this work, an innovative combined configuration of solar-geothermal heat has been proposed in order to reduce the amount of fuel consumption in the greenhouses. A comprehensive thermo economic analysis has been accomplished to demonstrate the proposed system effectiveness. The economic survey approach at this step was Net Present Value (NPV). The NPV results prove the super satisfactory performance of the proposed system with a payback period of 6.5 years.


Main Subjects

[1] Ejilah, R., Abdulkadir, L., and Adisa, B., "Review of Sclerocarya Birrea Seed Oil Extracted as a Bio-energy Resource for Compression Ignition Engines, Int. J. Agric & Biol Eng, Vol. 5, No. 3, pp. 1-9, (2012).
[2] Canakci, M., and Akinci, I., "Energy use Pattern Analyses of Greenhouse Vegetable Production, Energy, Vol. 31, pp. 1243–1256, (2006).

[3] Heidari, M. D., and Omid, M., "Energy use Patterns and Econometric Models of Major Greenhouse Vegetable Productions in Iran, Energy, Vol. 36, pp. 220–225, (2012).

[4] Omid, M., Ghojabeige, F., Ahmadi, F., and Delshad, F., "Energy use Pattern and Benchmarking of Selected Greenhouses in Iran using Data Envelopment Analysis, Energy Conversion and Management, Vol. 52, pp. 153–162, (2011).

[5] Hatirli, S. A., Ozkan, B., and Fert, C., "Energy Inputs and Crop Yield Relationship in Greenhouse Tomato Production", Renewable Energy, Vol. 31, pp. 427–438, (2006).
[6] Ozkan, B., Ceylan, R. F., and Kizilay, H., "Energy Inputs and Crop Yield Relationships in
Greenhouse Winter Crop Tomato Production", Renewable Energy, Vol. 36, pp. 3217–
3221, (2011).

[7] Tzempelikos, A., and Athienitis, A. K., "The Impact of Shading Design and Control on Building Cooling and Lighting Demand", Solar Energy, Vol. 81, No. 3, pp. 369–382, (2007).

[8] Vadiee, A., and Martin, V., "Thermal Energy Storage Strategies for Effective Closed Greenhouse Design", Applied Energy, Vol. 109, pp. 337-343, (2013).

[9] Zhang, Y., Gauthier, L., Halleux, D. D., Dansereau, B., and Gosselin, A., "Effect of Covering Materials on Energy Consumption and Greenhouse Microclimate", Agricultural and Forest Meteorology, Vol. 82, pp. 227–244, (1996).
[10] Cossu, M., Murgia, L., Ledda, L., Deligios, P. A., Sirigu, A., Chessa, F., and Pazzona, A., "Solar Radiation Distribution inside a Greenhouse with South-oriented Photovoltaic Roofs and Effects on Crop Productivity", Applied Energy, Vol. 133, pp. 89-100, (2014).

[11]Willits, D. H., Chandra, P., and Peet, M. M., "Modelling Solar Energy Storage Systems for Greenhouses", Journal of Agricultural Engineering Research, Vol. 32, No. 1, pp. 73–93, (1985).

[12] Liu, T., McConkey, B., Huffman, T., Smith, S., MacGregor, B., Yemshanov, D., and Kulshreshtha, S., "Potential and Impacts of Renewable Energy Production from Agricultural Biomass in Canada", Applied Energy, Vol. 130, pp. 222-229, (2014).

[13] Abdel-Ghany, A. M., and Al-Helal, I. M., "Solar Energy Utilization by a Greenhouse: General Relations", Renewable Energy, Vol. 36, No. 1, pp. 189-196, (2011).

[14] Lazaar, M., Kooli, S., Hazarni, M., Farhat, A., and Belghith, A., "Use of Solar Energy for the Agricultural Greenhouses Autonomous Conditioning", Desalination, Vol. 168, pp. 169-175, (2004).

[15] Vadiee, A., and Martin, V., "Energy Analysis and Thermo Economic Assessment of the Closed Greenhouse –The Largest Commercial Solar Building", Applied Energy, Vol. 102, pp. 1256-1266, (2013).

[16] Farzaneh-Gord, M., Ghezelbash, R., Arabkoohsar, A., Pilevari, L., Machado, L., and Koury, R. N. N., "Employing Geothermal Heat Exchanger in Natural Gas Pressure Drop Station in Order to Decrease Fuel Consumption, Energy, Vol. 83, No. 1, pp. 164-176, (2015).

[17] Ostergaard, P., and Lund, H., "A Renewable energy System in Frederikshavn using Lowtemperature
Geothermal Energy for District Heating", Applied Energy, Vol. 88, No. 2, pp. 479-487, (2011).

[18] Lund, J. W., "Definition and Importance of Geothermal Energy", Geothermal Energy Utilization, Vol. 27, pp. 2-4, (2006).

[19] Rafferty, K., "Some Considerations for the Heating of Greenhouses with Geothermal Energy", Geothermics, Vol. 15, pp. 227-244, (1986).

[20] Bakos, G. C., Fidanidis, D., Tsagas, N. F., "Greenhouse Heating using Geothermal Energy", Geothermics, Vol. 28, pp. 759-765, (1999).

[21] Karytsas, C., "Low Enthalpy Geothermal Energy Utilisation Schemes for Greenhouse and District Heating at Traianoupolis Evros, Greece", Fuel and Energy Abstracts, Vol. 44, pp. 311-315, (2003).

[22] Ghosal, M. K., Tiwari, G. N., "Mathematical Modelling for Greenhouse Heating by using Thermal Curtain and Geothermal Energy, Solar Energy, Vol. 76, No. 5, pp. 603- 613, (2004).

[23] Soteris, A. K., "Solar Thermal Collectors and Applications", Progress in Energy and Combustion Science, Vol. 30, pp. 231–295, (2004).
[24] Maghsood, J., "A Study of Solar Energy Parameters in Plastic-covered Greenhouses, Journal of Agricultural Engineering Research", Vol. 21, No. 3, pp. 305-312, (1976).

[25] Van-Bavel, C. H. M., Damagnez, J., Sadler, E. J., "The Fluid-roof Solar Greenhouse: Energy Budget Analysis by Simulation", Agricultural Meteorology, Vol. 23, pp. 61-76, (1981).

[26] Santamouris, M., Argiriou, A., and Vallindras, M., "Design and Operation of a Low Energy Consumption Passive Solar Agricultural Greenhouses", Solar Energy, Vol. 52, No. 5, pp. 371-378, (1994).
[27] Hasson, A. M., "A Study of Solar Energy and its Components under a Plastic Greenhouse", Energy Conversion and Management, Vol. 31, No. 1, pp. 1-5, (1991).

[28]Willits, D. H., Chandra, P., and Peet, M. M., "Modelling Solar Energy Storage Systems for Greenhouses", Journal of Agricultural Engineering Research, Vol. 32, No. 1, pp. 73-93, (1985).

[29] Zabeltitz, C., "Greenhouse Heating with Solar Energy", Energy in Agriculture, Vol. 5, No. 2, pp. 111-120, (1986).
[30] Kürklü, A., Bilgin, S., and Özkan, B., "A Study on the Solar Energy Storing Rock-bed to Heat a Polyethylene Tunnel Type Greenhouse", Renewable Energy, Vol. 28, No. 5, pp. 683-697, (2003).
[31] Abdel-Ghany, A., and Al-Helal, I., "Solar Energy Utilization by a Greenhouse: General Relations", Renewable Energy, Vol. 36, No. 1, pp. 189-196, (2011).
[32] Xu, J., Li, Y., Wang, R. Z., Liu, W., "Performance Investigation of a Solar Heating System with Underground Seasonal Energy Storage for Greenhouse Application, Energy, Vol. 67, No. 1, pp. 63-73, (2014).

[33] Ntinas, G. K., Fragos, V. P., and Martzopoulou, C. N., "Thermal Analysis of a Hybrid Solar Energy Saving System Inside a Greenhouse", Energy Conversion and Management, Vol. 81, pp. 428-439, (2014).

[34] Farzaneh-Gord, M., Arabkoohsar, A., Deymi-Dashtebayaz, M., Khoshnevis, A. B., "New Method of Solar Energy Application in Greenhouses in Order to Decrease Fuel Consumption", International Journal of Agricultural and Biological Engineering, Vol. 6, No. 4, pp. 64-75, (2013).

[35] Henson, A., "Conceptual Design of a Solar-Thermal Heating System with Seasonal Storage for a Vashon Greenhouse, A Thesis Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science in Mechanical Engineering University of Washington, (2006).

[36] Farzaneh-Gord, M., Arabkoohsar, A., Deymi-Dashtebayaz, M., Machado, L., and Koury, R. N. N., "Energy and Exergy Analysis of Natural Gas Pressure Reduction Points Equipped with Solar Heat and Controllable Heaters", Renewable Energy, Vol. 72, pp. 258–270, (2014).
[37]Farzaneh-Gord, M., Arabkoohsar, M., Deymi-Dashtebayaz, M., and Farzaneh-Kord, V., "Feasibility of Accompanying Uncontrolled Linear Heater with Solar System in Natural Gas Pressure Drop Stations", Energy, Vol. 41, pp. 420-428, (2012).
[38]Farzaneh-Gord, M., Arabkoohsar, A., Rezaei, M., and Deymi-Dashtebayaz, M., "Feasibility of Employing Solar Energy in Natural Gas Pressure Drop Stations", Journal of the Energy Institute, Vol. 84, No. 3, pp. 165-173, (2011).
[39] Arabkoohsar, A., Farzaneh-Gord, M., Deymi-Dashtebayaz, M., Machado, L., and Koury, R. N. N., "A New Design for Natural Gas Pressure Reduction Points by Employing a Turbo Expander and a Solar Heating Set", Renewable Energy, Vol. 81, pp. 239-250,(2015).

[40] https://eosweb.larc.nasa.gov/cgi-bin/sse/retscreen.cgi?email=skip@larc.nasa.gov 
[41] Gultekin, A., Aydın, M., and Sisman, A., "Determination of Optimal Distance between Boreholes", Thirty-Ninth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 24-26, (2014).
[42] http://shaft-dig.blogfa.com/
[43] Sagia, Z., Stegou, A., and Rakopoulos, C., "Borehole Resistance and Heat Conduction around Vertical Ground Heat Exchangers", The Open Chemical Engineering Journal, Vol. 6, pp. 32-40, (2012).
[44] Bahadori, A., Zendehboudi, S., and Zahedi, G., "A Review of Geothermal Energy Resources in Australia: Current Status and Prospects", Renewable and Sustainable Energy Reviews, Vol. 21, pp. 29-34, (2013).
[45] Kibbin, M., "Mathematical Models for Heat and Mass Transport in Geothermal Systems", Transport Phenomena in Porous Media, pp. 131-154, (1998).
[46] http://solar.polar.ir/.
[47] Farzaneh-Gord, M., Parvizi, S., Arabkoohsar A, Machado, L., and Koury, R. N. N., "Potential use of Capillary Tube Thermal Mass Flow Meters to Measure Residential Natural Gas Consumption", Journal of Natural Gas Science and Engineering, Vol. 22, pp. 540-550, (2015).