A General Form Solution for Elastic Buckling of Thin Cylinders Made of FGM under Axial Loading

Document Type : Research Paper

Author

Department of Mechanical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran

Abstract

In this article, the axisymmetric mechanical buckling of thin cylindrical shell made of functionally graded material (FGM) is considered. The governing equations for a thin cylinder based on the first-order shell theory and Timoshenko's assumptions are obtained. The equations are derived using the Sanders simplified kinematic relations and the principle of work and energy. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. It is assumed that the mechanical properties vary continuously through the shell thickness. The thin cylindrical shell is under uniform axial compressive load. The expression for the critical mechanical buckling load is obtained analytically and is given by closed form solution. The results are validated with the Timoshenko's formula in the literature.

Keywords

Main Subjects


] Eslami, M. R., Ziaii, A. R., and Ghorbanpour, A., “Thermoelastic Buckling of Thin      Cylindrical Shells Based on Improved Donnell Equations”, J. Thermal Stresses, Vol. 19,      pp. 299-316, (1990).
 
[2] Eslami, M. R., and Javaheri, R., “Thermal and Mechanical Buckling of Composite     Cylindrical Shells”, J. Thermal Stresses, Vol. 22, No. 6, pp. 527-545, (1999).
 
[3] Eslami, M. R., and Shariyat, M., “A High-order Theory for Dynamic Buckling and Post     Buckling Analysis of Laminated Cylindrical Shell”, J. ASME, Pressure Vessel Tech., Vol.     121, pp. 94-102, (1999).
 
[4] Eslami, M. R., and Shariyat, M., “Dynamic Buckling and Post Buckling of Imperfect     Orthotropic Cylindrical Shells under Mechanical and Thermal Loads Based on the Three-    dimensional Theory of Elasticity”, J. ASME, Appl. Mech., Vol. 66, pp. 476-484, (1999).
 
[5] Eslami, M. R., and Shariyat, M., “Elastic, Plastic, and Creep Buckling of Imperfect     Cylinders under Mechanical and Thermal Loading”, J. ASME, Pressure Vessel Tech.,      Vol. 118, No. 1, pp. 27-36, (1997).
 
[6] Eslami, M. R., and Shahsiah, R., “Thermal Buckling of Imperfect Cylindrical Shells”, J.     Thermal Stresses, Vol. 24, No. 1, pp. 71-90, (2000).
 
[7] Birman, V., and Bert, C. W., “Buckling and Post Buckling of Composite Plates and Shells     Subjected to Elevated Temperature”, Trans. ASME, J. Appl. Mech., Vol. 60, pp. 514-519,     (1993).
 
[8] Shen, H. S., “Post Buckling Analysis of Imperfect Stiffened Laminated Cylindrical      Shells under Combined External Pressure and Axial Compression”, J. Computers and      Structures, Vol. 63, pp. 335-348, (1997).
 
[9] Shen, H. S., “Post Buckling Analysis of Imperfect Stiffened Laminated Cylindrical       Shells under Combined External Pressure and Thermal Loading”, Int. J. Mechanical        Sciences, Vol. 40, pp. 339-355, (1998).
 
[10] Shen, H. S., “Thermo-mechanical Post Buckling of Composite Laminated Cylindrical          Shells with Local Geometric Imperfections”, Int. J. Solids and Structures, Vol. 36, pp.          597-617, (1999).
 
[11] Iu, V. P., and Chia, C. Y., “Effect of Transverse Shear on Nonlinear Vibration and         Post Buckling of Anti Symmetric Cross Ply Imperfect Cylindrical Shells”, Int. J.          Mechanical Sciences, Vol. 30, pp. 705-718, (1988).
 
[12] Reddy, J. N., and Savoia, M., “Layer-wise Shell Theory for Post Buckling of          Laminated Circular Cylindrical Shells”, J. AIAA, Vol. 30, pp. 2148-2154, (1992).
 
[13] Whitney, J. M., and Ashton, J. E., “Effect of Environment on the Elastic Response of          Layered Composite Plates”, J. AIAA, Vol. 9, pp. 1708-1713, (1971).
 
[14] Snead, J. M., and Palazotto, A. N., “Moisture and Temperature Effects on the          Instability of Cylindrical Composite Panels”, J. Aircraft, Vol. 20, pp. 777-783, (1983).
 
[15] Lee, S. Y., and Yen, W. J., “Hygrothermal Effects on the Stability of a Cylindrical          Composite Shell Panel, J. Computers and Structures”, Vol. 33, pp. 551-559, (1989).
 
[16] Ram, K. S. S., and Sinha, P. K., “Hygrothermal Effects on the Buckling of Laminated         Composite Structures”, Vol. 21, pp. 233-247, (1992).
 
[17] Chao, L. P., and Shyu, S. L., “Nonlinear Buckling of Fiber Reinforced Composite           Plates under Hygrothermal Effects”, J. Chinese Institute of Engineers, Vol. 19, pp. 657-         667, (1996).
 
[18] Palazotto, A. N., and Tisler, T. W., “Experimental Collapse Determination of          Cylindrical Composite Panels with Large Cutouts under Axial Load”, J. Composite          Structures, Vol. 12, pp. 61-78, (1989).
 
[19] Palazotto, A. N., “An Experimental Study of a Curved Composite Panel with a           Cutout, J. American Society for Testing and Materials”, Vol. 972, pp. 191-202, (1988).
 
[20] Horban, B. A., and Palazotto, A. N., “Experimental Buckling of Cylindrical          Composite Panels with Eccentrically Located Circular Delaminations”, J. Spacecraft  and Rockets, Vol. 24, pp. 349-352, (1987).
 
[21] Siefert, G. R., and Palazotto, A. N., “The Effect of a Centrally Located Midplane           Delamination on the Stability of Composite Panels”, J. Experimental Mechanics, Vol. 26, pp. 330-336, (1986).
 
[22] Dennis, S. T., and Palazotto, A. N., “Large Displacement and Rotational Formulation          for Laminated Shells Including Parabolic Transverse Shear”, Int. J. Nonlinear            Mechanics, Vol. 25, pp. 67-85, (1990).
 
[23] Dennis, S. T., and Palazotto, A. N., “Transverse Shear Deformation in Orthotropic          Cylindrical Pressure Vessels using a High-order Shear Theory”, J. AIAA, Vol. 27, pp.          1441-1447, (1989).
 
[24] Tsai, C. T., Palazotto, A. N., and Dennis, S. T., “Large Rotation Snap Through           Buckling in Laminated Cylindrical Panels”, J. Finite Elements in Analysis and Design,          Vol. 9, pp. 65-75, (1991).
 
[25] Dennis, S. T., and Palazotto, A. N., “Effect of Nonlinear Curvature Strains on the           Buckling of Laminated Plates and Shells”, Int. J. Numerical Methods in Engineering,          Vol. 36, pp. 595-610, (1993).
 
[26] Schimmels, S. A., and Palazotto, A. N., “Nonlinear Geometric and Material Behavior of          Composite Shells with Large Strains”, J. Engineering Mechanics, Vol. 120, pp. 320-345, (1994).
 
[27] Palazotto, A. N., Chien, L. S., and Taylor, W. W., “Stability Characteristics of            Laminated Cylindrical Panels under Transverse Loading”, J. AIAA, Vol. 30, pp. 1649-          1653, (1992).
 
[28] Chien, L. S., and Palazotto, A. N., “Dynamic Buckling of Composite Cylindrical          Panels with Higher-order Transverse Shear Subjected to a Transverse Concentrated         Load”, Int. J. Nonlinear Mechanics, Vol. 27, pp. 719-734, (1992).
 
[29] Schimmels, S. A., and Palazotto, A. N., “Collapse Characteristics of Cylindrical          Panels under Axial Loads”, J. AIAA, Vol. 30, pp. 1447-1466, (1992).
 
[30] Shen, H. S., “Hygrothermal Effects on the Post Buckling of Composite Laminated         Cylindrical Shells”, J. Composite Science and Technology, Vol. 60, pp. 1227-1240,         (2000).
 
[31] Birman, V., “Buckling of Functionally Graded Hybrid Composite Plates”, Proceeding           of the 10th Conference on Engineering Mechanics, Vol. 2, pp. 1199-1202, New York, USA, (1995).
  
[32] Ng, T. Y., Lam, Y. K., Liew, K. M., and Reddy, J. N., “Dynamic Stability Analysis         of Functionally Graded Cylindrical Shell under Periodic Axial Loading”, Int. J. Solids and Structures, Vol. 38, pp. 1295-1300, (2001).
 
[33] Shahsiah, R., and Eslami, M. R., “Thermal Buckling of Functionally Graded Cylidrical           Shell”, J. Thermal Stresses,Vol. 26, No. 3, pp. 277-294, (2003).
   
[34] Shahsiah, R., and Eslami, M. R., “Functionally Graded Cylindrical Shell Thermal          Instability Based on Improved Donnell Equations”, J. AIAA, Vol. 41, No. 9, pp. 1819-          1826, (2003).
 
[35] Shahsiah, R., Eslami, M. R., and Naj, R., “Thermal Instability of Functionally Graded       Shallow Spherical Shell”, J. Thermal Stresses, Vol. 29, No. 8, pp. 771-790, (2006).
 
[36] Najafizadeh, M. M., and Eslami, M. R., “First Order Theory Based Thermoelastic           Stability of Functionally Graded Material Circular Plates”, J. AIAA, Vol. 40, No. 7, pp.           444-450, (2002).
 
[37] Javaheri, R., and Eslami, M. R., “Thermoelastic Buckling of Rectangular Plates            Made of Functionally Graded Materials”, J. AIAA, Vol. 40, No. 1, pp. 162-169, (2002).
  
[38] Javaheri, R., and Eslami, M. R., “Buckling of Functionally Graded Plates under In-           Plane Compressive Loading”, ZAMM, Vol. 82, No. 4, pp. 277-283, (2002).
 
[39] Javaheri, R., and Eslami, M. R., “Buckling of Functionally Graded Plates under In-          plane Compressive Loading Based on Various Plate Theories”, J. Iranian Society of             Mechanical Engineers, Vol. 6, No. 1, pp. 76-93, (2005).
 
[40] Javaheri, R., and Eslami, M. R., “Thermal Buckling of Functionally Graded Plates       Based on Higher Order Theory”, J. Thermal Stresses, Vol. 25, No. 7, pp. 603-625,        (2002).
 
[41] Brush, D. O., and Almroth, B. O., “Buckling of Bars, Plates and Shells”, McGraw-            Hill, New York, (1975).
 
[42] Timoshenko, S. P., and Gere, J. M., “Theory of Elastic Stability”, McGraw-Hill, New           York, (1960).
 
[43] Suresh, S., and Mortensen, A., “Fundamentals of Functionally Graded Materials”,           Cambridge Uni. Press, London, (1998).
 
[44] Praveen, G. N., and Reddy, J. N., “Nonlinear Transient Thermoelastic Analysis of          Functionally Graded Ceramic Metal Plates”, Int. J. Solids and Structures, Vol. 35, No. 33, pp. 4457-4476, (1998).