Stress Intensity Factor of Radial Cracks for Rotating Disks and Cylinders using Average Stress Method

Document Type : Research Paper

Author

‎Department of Mechanical Engineering‎, ‎Islamic Azad Eniversity‎, ‎Central Tehran Branch‎, ‎Tehran‎, ‎Iran‎

Abstract

This article utilizes the average stress method to obtain the stress intensity factor of rotating solid and hollow disks/cylinders containing a radial crack‎. ‎It is assumed that the cracks are located radially at center‎, ‎internal or external radius of the geometry‎. ‎Results are shown for both of the plane stress and plane strain assumptions and are validated against the known data introduced in the literature search.

Keywords

Main Subjects


[1] Rooke, D.P., Tweed, J., ”The Stress Intensity Factors of a Radial Crack in a Finite Rotating
Elastic Disc” International Journal of Engineering Science, vol. 10, pp.709-714, (1972).
[2] Rooke, D.P., Tweed, J., ”The Stress Intensity Factor of an Edge Crack in a Finite Rotating
Elastic Disc”, International Journal of Engineering Science, Vol. 11, pp.279-283, (1973).
[3] Owen, D.R.J., Griffeiths, J.R., ”Stress Intensity Factors for Cracks in a Plate Containing
a Hole and in a Spinning Disc”, International Journal of Fracture, Vol. 9, pp.471-476,
(1973).
[4] Isida, M., ”Rotating Disk Containing an Internal Crack Located at an Arbitrary Position”,
Engineering Fracture Mechanics, Vol. 14, pp.549-555, (1981).
[5] Sukere, A.A., ”Accurate Approximations of Stress Intensity Factors or Edge Cracks in
Rotating Disks”, International Journal of Fracture, Vol. 32, pp.43-46 (1987).
[6] Williams, J.G., Isherwood, D.P., ”Calculation of Strain-Energy Release Rates of Cracked
Plates by an Approximate Method”, Journal of Strain Analysis for Engineering Design,
Vol. 3, pp.17-22, (1968).
[7] Sukere, A.A., ”The Stress Intensity Factors of Internal Radial Cracks in Rotating Disks by
the Method of Caustics”, Engineering Fracture Mechanics, Vol. 26, pp.65-74, (1987).
[8] Gregory, R.D., ”The Spinning Circular Disc with a Radial Edge Crack; an Exact Solution”,
International Journal of Fracture, Vol. 41, pp.39-50, (1989).
[9] Schneider, G.A., Danzer, R., ”Calculation of the Stress Intensity Factor of an Edge Crack
in a Finite Elastic Disc using the Weight Function Method”, Engineering Fracture Mechanics,
Vol. 34, pp.547-552, (1989).
[10] Oliveria, R., Wu, X.R., ”Stress Intensity Factors for Axial Cracks in Hollow Cylinders
Subjected to Thermal Shock”, Engineering Fracture Mechanics, Vol. 10, pp.185-197,
(1987).
[11] Gowhari-Anaraki A.R., Hardy, S.J., Adibi-Asl, R., ”Stress Intensity Factors for Radial
Cracks in Annular and Solid Discs under Constant Angular Velocity”, International Journal
of Strain Analysis for Engineering Design, Vol. 40, pp.217-223, (2004).
[12] Broek, D., Elementary engineering fracture mechanics, Martinus Nijhoff Publishers,
Boston, (1982).
[13] Fett, T., Stress Intensity Factors and T-stresses Weigh Functions, University of Karlsruhe,
Karlsruhe, (2008).
[14] Bueckner, H.F., ”A Novel Principle for the Computation of Stress Intensity Factors”,
ZAMM, Vol. 50, pp.529-546, (1970).
[15] Rice, J.R., ”Some Remarks on Elastic Crack-tip Stress Field’, International Journal of
Solids and Structures, Vol., 8, pp.751-758, (1972).
[16] Pastrama, S.D., de Castro, P.M.S.T., ”Weight Functions from Finite Element Displacements”,
International Journal of Pressure Vessels and Piping, Vol. 65, pp.229-236, (1998).
[17] Cojocaru, D., Pstram, S.D., de Castro, P.M.S.T., ”Finite Element Weight Functions Application
for a Cracked Disk”, International Journal of Fracture Vol., 116, pp.L9-L14, (2002).
[18] Ma, C.C., Huang, J.I., Tsai, C.H., ”Weight Functions and Stress Intensity Factors for Axial
Cracks in Hollow Cylinders”, Journal of Pressure Vessel Technology, Vol., 116, pp.423-
430, (1994).
[19] Andrasik, C.P., Parker, A.P., ”Dimensionless Stress Intensity Factors for Crack Thick
Cylinders under Polynomial Crack Face Loadings”, Engineering Fracture Mechanics,
Vol., 19, pp.187-193, (1984).
[20] Grandt, A.F., ”Stress Intensity Factors for Cracked Holes and Rings Loaded with Polynomial
Crack Face Pressure Distributions”, International Journal of Fracture, Vol, 14,
pp.R21-R229, (1978).
[21] Delale, F., Erdogan, F., ”Stress Intensity Factors in a Hollow Cylinder Containing a Radial
Crack”, International Journal of Fracture, Vol. 20, pp.251-265, (1982).
[22] Tada, H., Paris, P.C., Irwin, G.R., The Stress Analysis of Cracks Handbook, ASME Press,
New York, (2000).